FRG: Microstructure Design of Advanced Multi-Domain Magnetic Materials Under Applied Fields

FRG:先进多畴磁性材料在应用领域的微结构设计

基本信息

  • 批准号:
    9905725
  • 负责人:
  • 金额:
    $ 92.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-04-01 至 2004-03-31
  • 项目状态:
    已结题

项目摘要

9905725WangThis Focused Research Group (FRG) integrated program includes experimentation, analysis and simulation to develop a fundamental and technological understanding of the formation of complex multi-domain (e.g., compositional, structural and magnetic) microstructures under applied magnetic and stress fields in magnetic materials. This allows for the possibility of tailoring multi-domain microstructures for desired properties through advanced thermomechanical and thermomagnetic treatments. Material systems investigated include the high-coercive magnetic alloys of Fe-Cr-Co and Co-Pt, whose magnetic domain structure is self-adjusted to the evolving complex multi-phase microstructure. Advanced characterization techniques are used to provide accurate descriptions of the alloy systems upon which realistic analytical and simulation models are formulated. A series of three-dimensional (3D) computer simulations are performed to characterize the size, shape, orientation, spatial arrangement and dynamic switching of the structural and magnetic domains as functions of internal misfit strain and applied magnetic and stress fields. Effects of these microstructural features on the magnetic properties of the alloys are examined. In parallel with the simulations, thermomagnetic and thermoelastic treatments and magnetic property measurements are carried out to validate the simulation predictions and to test key assumptions. Early stages of the program focus on fundamental understanding and model development, while later stages address practical applications of the integrated approach to the design and development of novel multi-domain microstructures for new technological challenges. The grant is co-funded between the MPS Office of Multidisciplinary Activities and the Metals Research Program in the Division of Materials Research.%%%This FRG should have important impact on science, technology and education. Improved understanding of the complex microstructures in these systems under applied fields is expected. The numerical methods developed will allow realistic 3D computational prototyping of the multi-domain microstructures for a range of advanced applications. These advances will minimize the need for trail-and-error experiments in microstructural engineering for new alloy development. The computational design tools with user-friendly interfaces to be developed are uniquely suited for adoption to undergraduate and graduate instructions. The project will also provide a unique opportunity for the students involved to be exposed to a combination of advanced simulation methods and experimental characterization techniques. It will provide an excellent vehicle for knowledge transfer to a new generation of materials scientists and engineers who are able to contribute directly to science based microstructural engineering in their workplace.***
9905725王这个重点研究小组(FRG)的综合方案包括实验,分析和模拟,以发展复杂的多域形成的基本和技术理解(例如,组成、结构和磁性)微结构。 这允许通过先进的热机械和热磁处理来定制多域微结构以获得所需性能的可能性。 研究的材料系统包括Fe-Cr-Co和Co-Pt的高矫顽磁性合金,其磁畴结构可以根据不断变化的复杂多相微观结构进行自我调整。 先进的表征技术被用来提供准确的描述,现实的分析和模拟模型制定的合金系统。 进行一系列三维(3D)计算机模拟以表征作为内部失配应变和施加的磁场和应力场的函数的结构和磁畴的尺寸、形状、取向、空间布置和动态切换。 研究了这些微观结构特征对合金磁性能的影响。 在模拟的同时,进行热磁和热弹性处理和磁性能测量,以验证模拟预测和测试的关键假设。 该计划的早期阶段侧重于基本理解和模型开发,而后期阶段则针对新技术挑战设计和开发新型多域微结构的综合方法的实际应用。 该补助金由MPS多学科活动办公室和材料研究部的金属研究计划共同资助。联邦德国应该对科学、技术和教育产生重要影响。 在应用领域的这些系统中的复杂的微观结构的理解提高。 开发的数值方法将允许逼真的三维计算原型的多域微观结构的一系列先进的应用。 这些进展将最大限度地减少在新合金开发的微观结构工程中进行试错实验的需要。 计算设计工具与用户友好的界面开发是唯一适合通过本科生和研究生的指示。 该项目还将为参与的学生提供一个独特的机会,让他们接触到先进的模拟方法和实验表征技术的结合。 它将为新一代材料科学家和工程师提供一个很好的知识转移工具,他们能够在工作场所直接为基于科学的微结构工程做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunzhi Wang其他文献

Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys
钛合金中的新型转变途径和异质析出物微观结构
  • DOI:
    10.1016/j.actamat.2020.06.048
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Tianlong Zhang;Dong Wang;Yunzhi Wang
  • 通讯作者:
    Yunzhi Wang
Hotspots Analysis of Electronic Health
电子健康热点分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wentao Wang;Kun Zhang;L. Jing;Yunzhi Wang;Shuai Zhang;Xiao Xie;Yang
  • 通讯作者:
    Yang
Revealing the atomistic mechanisms of strain glass transition in ferroelastics
揭示铁弹性体应变玻璃化转变的原子机制
  • DOI:
    10.1016/j.actamat.2020.04.014
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Chuanxin Liang;Dong Wang;Zhao Wang;Xiangdong Ding;Yunzhi Wang
  • 通讯作者:
    Yunzhi Wang
Thermally mediated multiferroic composites for the magnetoelectric materials
用于磁电材料的热介导多铁复合材料
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengguo Lu;Z. Fang;E. Furman;Yunzhi Wang;Qiming Zhang;Y. Mudryk;K. Gschneidner;V. Pecharsky;C. Nan
  • 通讯作者:
    C. Nan
Numerical simulation of irradiation hardening in Zirconium
锆辐照硬化的数值模拟
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Boyne;C. Shen;R. Najafabadi;Yunzhi Wang
  • 通讯作者:
    Yunzhi Wang

Yunzhi Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunzhi Wang', 18)}}的其他基金

Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
  • 批准号:
    1923929
  • 财政年份:
    2020
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Continuing Grant
DMREF/Collaborative Research: Accelerated Development of Next Generation of Ti Alloys by ICMSE Exploitation of Non-Conventional Transformation Pathways
DMREF/合作研究:通过 ICMSE 探索非常规转变途径加速下一代钛合金的开发
  • 批准号:
    1435483
  • 财政年份:
    2014
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain Engineering
合作研究:利用纳米域工程设计低磁滞高磁化率材料
  • 批准号:
    1410322
  • 财政年份:
    2014
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
  • 批准号:
    1008349
  • 财政年份:
    2010
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Continuing Grant
CAREER: Simulating the Evolution of Advanced Microstructure
职业:模拟先进微观结构的演化
  • 批准号:
    9703044
  • 财政年份:
    1997
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

新型微针气体探测器LM(Leak Microstructure)的研究
  • 批准号:
    10775151
  • 批准年份:
    2007
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
  • 批准号:
    2221098
  • 财政年份:
    2023
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
  • 批准号:
    2221104
  • 财政年份:
    2023
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Texture design for mixed gels of polysaccharides and proteins by microstructure control
通过微观结构控制进行多糖和蛋白质混合凝胶的织构设计
  • 批准号:
    22KF0146
  • 财政年份:
    2023
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Microstructure integrated continuum model and numerical scheme for the design and characterization of 2-D microstructured materials
用于二维微结构材料设计和表征的微结构集成连续体模型和数值方案
  • 批准号:
    RGPIN-2022-03613
  • 财政年份:
    2022
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
  • 批准号:
    2118181
  • 财政年份:
    2021
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
  • 批准号:
    2118197
  • 财政年份:
    2021
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
  • 批准号:
    2118206
  • 财政年份:
    2021
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
  • 批准号:
    2118172
  • 财政年份:
    2021
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
  • 批准号:
    1923929
  • 财政年份:
    2020
  • 资助金额:
    $ 92.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了