Building New Spintronic Materials with Layered Chalcogenides

用层状硫属化物构建新型自旋电子材料

基本信息

  • 批准号:
    1410428
  • 负责人:
  • 金额:
    $ 41.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL ABSTRACTThis award from the Condensed Matter Physics Program of the Division of Materials Research supports the University of Tennessee at Knoxville with a project focused on the design, discovery, and characterization of new materials for spintronics. Spintronics is the field that makes use of the electric charge and the spin (magnetic moment of the electron)of the electron to create new energy efficient device functionalities. Spintronics is a fast-developing field and it is expected to be further transformed by exploiting the properties of a class of material known as chalcogenides. Atomically thin layers of chalcogenides are true semiconductors and can lead to next generation of high performance electronic devices such as field-effect and photo- transistors. The fusion of spintronics with two dimensional chalcogenide semiconductors is expected to lead to revolutionary advances in nanoelectronics. As synthesis and crystal growth are excellent tools to reach undergraduate students, the research program is designed to actively involve undergraduates and kindle their interest in science. The hands-on experience of the students is complemented by a new course entitled "Nanomagnetism and Spintronics" to be taught at the advanced undergraduate level. In addition, the program supports the P.I.'s outreach activities, allowing the development of new demonstrations for middle school students based on superconductivity and magnetism.TECHNICAL ABSTRACTThe objective of this project is to design, discover, and characterize new spintronic materials based on the remarkable electronic and magnetic properties of layered chalcogenides. The project is focused on two classes of spintronic materials. One class involves the formation of a chiral soliton lattice (CSL) in layered, metallic helical magnets. The CSL is a lattice of solitons (domain wall boundaries) separated by ferromagnetic regions. The CSL periodicity is tunable using modest applied fields and this effect is predicted to lead to unique spintronic functionalities, such as spin current induction, soliton transport, and current-driven collective transport. The second class of materials involves stoichiometric quasi-2D magnetic semiconductors with high mobility. These materials order magnetically and potentially can be used in single-layer devices that may be useful as spin injectors, sensors, or transducers. One of the goals of this project is to elucidate design principles for CSL materials and quasi-2D magnetic semiconductors. Single crystals of targeted materials are grown using both flux and vapor transport techniques. The anisotropic properties of the materials are characterized using SQUID magnetometry and electrical transport. Small angle neutron diffraction is performed to characterize the helical order of the CSL materials and probe their response to magnetic fields. Single-layer field-effect devices made from semiconducting 2D ferromagnets are fabricated and their electrical properties characterized. As synthesis and crystal growth are excellent tools to reach undergraduate students, the research program is designed to actively involve undergraduates and kindle their interest in science. The hands-on experience of the students is complemented by a new course entitled "Nanomagnetism and Spintronics" to be taught at the advanced undergraduate level. In addition, the program supports the P.I.'s outreach activities, allowing the development of new demonstrations for middle school students based on superconductivity and magnetism.
非技术性摘要该奖项来自材料研究部凝聚态物理计划,支持田纳西大学诺克斯维尔的一个项目,该项目专注于自旋电子学新材料的设计、发现和表征。 自旋电子学是利用电子的电荷和自旋(电子的磁矩)来创建新的节能器件功能的领域。自旋电子学是一个快速发展的领域,它有望通过利用一类称为硫属化物的材料的特性而进一步转变。硫族化物的原子薄层是真正的半导体,并且可以导致下一代高性能电子器件,例如场效应和光电晶体管。自旋电子学与二维硫族化物半导体的融合有望导致纳米电子学的革命性进展。由于合成和晶体生长是接触本科生的绝佳工具,该研究计划旨在积极参与本科生并点燃他们对科学的兴趣。学生的实践经验是由一个名为“纳米磁学和自旋电子学”的新课程的补充,将在高级本科水平教授。此外,该计划还支持P.I.的推广活动,允许开发基于超导性和磁性的中学生新的演示。技术摘要本项目的目标是设计,发现和表征基于层状硫属化合物的显着的电子和磁性的新的自旋电子材料。该项目的重点是两类自旋电子材料。一类是在层状金属螺旋磁体中形成手征孤子晶格。CSL是由铁磁区域分隔的孤子(畴壁边界)的晶格。CSL的周期性是可调的,使用适度的应用领域,这种效果预计将导致独特的自旋电子功能,如自旋电流感应,孤子传输,电流驱动的集体运输。第二类材料涉及具有高迁移率的化学计量准2D磁性半导体。这些材料磁性有序,并可能用于单层器件,可用作自旋注入器,传感器或换能器。本计画的目标之一是阐明CSL材料与准二维磁性半导体的设计原理。目标材料的单晶使用熔剂和蒸汽传输技术生长。材料的各向异性特性的特点是使用SQUID磁强计和电输运。 小角中子衍射的CSL材料的螺旋顺序进行表征和探测其响应磁场。制作了由半导体二维铁磁体制成的单层场效应器件,并表征了它们的电学特性。由于合成和晶体生长是接触本科生的绝佳工具,该研究计划旨在积极参与本科生并点燃他们对科学的兴趣。学生的实践经验是由一个名为“纳米磁学和自旋电子学”的新课程的补充,将在高级本科水平教授。此外,该计划还支持P.I.的外展活动,为中学生开发基于超导性和磁性的新演示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Mandrus其他文献

Nonlinear photocurrent in quantum materials for broadband photodetection
用于宽带光电探测的量子材料中的非线性光电流
  • DOI:
    10.1016/j.pquantelec.2024.100535
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
    12.500
  • 作者:
    Yulin Shen;Louis Primeau;Jiangxu Li;Tuan-Dung Nguyen;David Mandrus;Yuxuan Cosmi Lin;Yang Zhang
  • 通讯作者:
    Yang Zhang
Magnetism in two-dimensional van der Waals materials
二维范德华材料中的磁性
  • DOI:
    10.1038/s41586-018-0631-z
  • 发表时间:
    2018-10-31
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Kenneth S. Burch;David Mandrus;Je-Geun Park
  • 通讯作者:
    Je-Geun Park
Dimensionality Effects in FeGe2 Nanowires: Enhanced Anisotropic Magnetization and Anomalous Electrical Transport
FeGe2 纳米线中的维度效应:增强的各向异性磁化和异常的电输运
  • DOI:
    10.1038/s41598-017-05771-6
  • 发表时间:
    2017-08-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Siwei Tang;Ivan Kravchenko;T. Z. Ward;Qiang Zou;Jieyu Yi;Cheng Ma;Miaofang Chi;Guixin Cao;An-Ping Li;David Mandrus;Zheng Gai
  • 通讯作者:
    Zheng Gai

David Mandrus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Mandrus', 18)}}的其他基金

Synthetic Design of Kitaev Magnets and Spin Liquids
Kitaev 磁体和自旋液体的合成设计
  • 批准号:
    1808964
  • 财政年份:
    2018
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Standard Grant

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Studentship
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Standard Grant
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Studentship
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Standard Grant
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 41.08万
  • 项目类别:
    EU-Funded
Royal Holloway and Bedford New College and Rubberatkins Limited KTP 23_24 R1
皇家霍洛威学院和贝德福德新学院和 Rubberatkins Limited KTP 23_24 R1
  • 批准号:
    10074401
  • 财政年份:
    2024
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Knowledge Transfer Partnership
Removal of Perfluorinated Chemicals Using New Fluorinated Polymer Sorbents
使用新型氟化聚合物吸附剂去除全氟化化学品
  • 批准号:
    LP220100036
  • 财政年份:
    2024
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Linkage Projects
Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
  • 批准号:
    DP240101590
  • 财政年份:
    2024
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 41.08万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了