Collaborative Research: Design of Low-Hysteresis High-Susceptibility Materials by Nanodomain Engineering
合作研究:利用纳米域工程设计低磁滞高磁化率材料
基本信息
- 批准号:1410636
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHICAL SUMMARYThis award supports theoretical and computational research aimed to develop new design concepts and principles for shape memory alloys, and ferroelectric and ferromagnetic materials to achieve improved functionality for various applications. In these materials structural domains can switch from one to another by the application of an external field, such as stress, electric or magnetic fields, allowing sensing and actuation to be realized simultaneously. These smart materials have found critical applications in many fields, including medical devices, satellites, robots, navigation systems, data storage and retrieving, electromechanical and electro-optic systems, to name a few. However, typical domain structures formed in these materials are too large leading to properties that are not optimal for applications. Another common problem is that functional fatigue that leads to premature failure. The PIs will use advanced computational and theoretical methods to investigate new design concepts and principles that connect crystal structure, defects, domain structure and functional properties. These design concepts and principles are aimed to guide experimental efforts and accelerate the discovery of new smart as well as structural materials with optimal properties. This is in alignment with the Materials Genome Initiative. This project will directly prepare graduate students to immediately contribute to the success of integrated computational materials science and engineering. Additionally, the training of researchers involved in materials development will afford a rapid uptake of new design concepts and methodology, resulting in increased effectiveness of materials technologists. The educational outreach of the project is designed to have a significant influence on encouraging high school students who are members of underrepresented groups to enter science and engineering disciplines.TECHNICAL SUMMARYThis award supports theoretical and computational research that focuses on ferroic-based functional materials including shape memory alloys, and ferroelectric and ferromagnetic materials. The main objective of this project is to accelerate the discovery of novel low-hysteresis high-susceptibility ferroic-based functional materials with strong fatigue resistance via the design of (a) transformation pathway networks, and (b) structural and chemical heterogeneities. The former explores the means to achieve high susceptibility by identifying systems with isolated circular transformation pathways, while the latter explores how to transform conventional micron-sized, long-range ordered, self-accommodating strain, polarization and magnetization domains into nanodomains by suppressing autocatalysis and regulating the spatial extent of domain growth and coarsening during ferroic phase transitions. A rigorous theoretical framework will be developed based on group theory, phase transformation crystallography and graph methods to analyze transformation pathway networks (TPNs). Through investigating the symmetry and topology of TPN graphs, a new classification of structural phase transformations will be introduced. The PIs aim to distinguish three distinct TPN types: ones that could provide high susceptibility, ones that are reversible and exhibit shape memory effect, and ones that could generate dislocations through transformations causing functional fatigue. The PI will perform systematic first principles and atomistic calculations for specific systems to assist in constructing and classifying TPN graphs, to quantify the energy landscapes, and to investigate the effects of various crystalline defects. Finally phase field simulations will be carried out to examine possible continuous phase separations and other mechanisms to generate nanoscale structural and chemical non-uniformities in the parent phase and to study their effects on subsequent ferroic phase transitions and ferroic nanodomain formation. The responses of these ferroic nanodomains to temperature and external fields will be documented. Drastically different properties from those of their microdomain counterparts are expected, in particular ultra-low-modulus quasi-linear pseudoelasticity, low hysteresis, high susceptibility such as giant piezoelectricity, giant magnetostriction and giant non-hysteretic strain response, and strong fatigue resistance. The educational outreach of the project is designed to have a significant influence on encouraging high school students who are members of underrepresented groups to enter science and engineering disciplines.
非技术总结该奖项支持理论和计算研究,旨在为形状记忆合金、铁电和铁磁材料开发新的设计概念和原理,以实现各种应用的改进功能。在这些材料中,结构域可以通过施加诸如应力、电场或磁场的外部场而从一个切换到另一个,从而允许同时实现感测和致动。这些智能材料在许多领域都有重要应用,包括医疗设备、卫星、机器人、导航系统、数据存储和检索、机电和电光系统等。然而,在这些材料中形成的典型畴结构太大,导致对于应用而言不是最佳的性质。另一个常见的问题是功能性疲劳导致过早失效。PI将使用先进的计算和理论方法来研究连接晶体结构,缺陷,畴结构和功能特性的新设计概念和原理。这些设计概念和原则旨在指导实验工作,并加速发现具有最佳性能的新型智能和结构材料。这与材料基因组倡议是一致的。该项目将直接为研究生做好准备,立即为综合计算材料科学和工程的成功做出贡献。此外,对参与材料开发的研究人员的培训将使他们能够快速掌握新的设计概念和方法,从而提高材料技术人员的效率。该项目的教育推广旨在对鼓励高中生谁是代表性不足的群体进入科学和工程学科的成员产生重大影响。技术总结该奖项支持理论和计算研究,重点是铁基功能材料,包括形状记忆合金,铁电和铁磁材料。本项目的主要目标是通过设计(a)转变路径网络和(B)结构和化学异质性,加速发现具有强抗疲劳性的新型低滞后高磁化率铁基功能材料。前者探索通过识别具有孤立循环转化途径的系统来实现高磁化率的方法,而后者探索如何通过抑制自催化和调节将传统的微米级、远程有序、自适应应变、极化和磁化畴转化为纳米畴铁磁相变期间畴生长和粗化的空间范围。基于群论、相变晶体学和图形方法,将建立一个严格的理论框架来分析转化途径网络(TPN)。通过研究TPN图的对称性和拓扑性,提出了一种新的结构相变分类。PI旨在区分三种不同的TPN类型:可提供高敏感性的TPN、可逆并表现出形状记忆效应的TPN以及可通过转化产生脱位导致功能性疲劳的TPN。PI将为特定系统执行系统的第一原理和原子计算,以帮助构建和分类TPN图,量化能量景观,并研究各种晶体缺陷的影响。最后,将进行相场模拟,以检查可能的连续相分离和其他机制,以产生纳米级的结构和化学不均匀性的母相,并研究其对随后的铁性相变和铁性纳米畴形成的影响。这些铁性纳米畴的温度和外部场的响应将被记录。与它们的微域对应物相比,预期具有显著不同的性质,特别是超低模量准线性伪弹性、低滞后、高敏感性(如巨压电性、巨磁致伸缩性和巨非滞后应变响应)和强抗疲劳性。该项目的教育推广活动旨在对鼓励属于代表性不足群体的高中生进入科学和工程学科产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ju Li其他文献
Accelerated High-Entropy Alloys Discovery for Electrocatalysis via Robotic-Aided Active Learning
通过机器人辅助主动学习加速电催化高熵合金的发现
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhichu Ren;Zhen Zhang;Yunsheng Tian;Ju Li - 通讯作者:
Ju Li
Electron Localization Enhances Cation Diffusion in Zirconia and Ceria: A First-Principles Study.
电子定位增强氧化锆和二氧化铈中的阳离子扩散:第一性原理研究。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yanhao Dong;L. Qi;Ju Li;I. Chen - 通讯作者:
I. Chen
Detection and quantification of two endoparasitic ciliates Boveria labialis and Boveria subcylindrical (Ciliophora: Scuticociliatia) by fluorescence in situ hybridization.
通过荧光原位杂交对两种内寄生纤毛虫 Boveria labialis 和 Boveria subcylindrical(Ciliophora:Scuticociliatia)进行检测和定量。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
Zifeng Zhan;Ju Li;Kuidong Xu - 通讯作者:
Kuidong Xu
The next detectors for gravitational wave astronomy
下一代引力波天文学探测器
- DOI:
10.1007/s11433-015-5747-7 - 发表时间:
2015-12 - 期刊:
- 影响因子:0
- 作者:
Blair David;Ju Li;Zhao ChunNong;Wen LinQing;Miao Haixing;Cai RongGen;Gao JiangRui;Lin XueChun;Liu Dong;Wu Ling-An;Zhu ZongHong;Hammond Giles;Paik Ho Jung;Fafone Viviana;Rocchi Alessio;Blair Carl;Ma YiQiu;Qin JiaYi;Page Michael - 通讯作者:
Page Michael
A foehn-induced haze front in Beijing: observations and implications
北京由焚风引起的雾霾锋面:观测结果及其影响
- DOI:
10.5194/acp-2020-720 - 发表时间:
2020-08 - 期刊:
- 影响因子:6.3
- 作者:
Ju Li;Zhaobin Sun;Donald H. Lenschow;Mingyu Zhou;Youjun Dou;Zhigang Cheng;Yaoting Wang;Qingchun Li - 通讯作者:
Qingchun Li
Ju Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ju Li', 18)}}的其他基金
EAGER: SUPER: Electrochemical Protonation to Achieve Superconducting Matter
EAGER:SUPER:电化学质子化实现超导物质
- 批准号:
2132647 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Creep-enabled 3D solid-state lithium metal batteries
合作研究:可蠕变的3D固态锂金属电池
- 批准号:
2034902 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Traversals in Transformation Strain Space and Microstructure Design for High Performance Ferroelastic Materials
合作研究:高性能铁弹性材料的变换应变空间遍历和微观结构设计
- 批准号:
1923976 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Electrochemically driven Mechanical Energy Harvesting
合作研究:电化学驱动的机械能量收集
- 批准号:
1610806 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
- 批准号:
1240696 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Developing A Complete Membrane-Cytoskeleton Model for Human Erythrocyte
合作研究:开发完整的人类红细胞膜细胞骨架模型
- 批准号:
1066469 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1240933 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Materials World Network: Collaborative Research: Modeling Ferroelastic Strain Glasses
材料世界网络:合作研究:铁弹性应变玻璃建模
- 批准号:
1008104 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AHSS: Multi-scale Modeling of Deformation Mechanism for Design of New Generation of Steels
AHSS:用于新一代钢材设计的变形机制多尺度建模
- 批准号:
0728069 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
- 批准号:
2321297 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant