CDS&E: Collaborative Research: Computational Design of Topological Superconductors and Weyl - Dirac Semimetals

CDS

基本信息

  • 批准号:
    1411343
  • 负责人:
  • 金额:
    $ 30.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Advanced Cyberinfrastructure contribute funds to this award. It supports a close interaction of theoretical and computational research to develop novel theoretical and computational methods and tools for calculating and predicting materials properties, and to use them to discover new materials with novel functionalities. The PIs will develop methods that combine a predictive computational method based on density functional theory with methods from the quantum mechanical theories of many interacting particles and methods from computer science. The PIs will focus on the discovery of new states of electrons that are predicted to exist in materials and involve new ways for electrons organize themselves. The organization obeys rules governed by topology, a mathematical theory that focuses on properties of objects that remain unchanged by deformation. While subtle, topological phases are robust being able to survive materials deformations and imperfections. These new topological states include new kinds of insulators, metals and superconductors. The new tools will enable the PIs and the community to predict specific materials with new electronic topological states that may arise in materials such as topological semimetals and superconductors. This research effort includes developing and disseminating a new software tool, TOP STUDIO, which will enhance and simplify research on material specific studies of new states of matter. Experimentalists, materials scientists and engineers in the US and in other countries will be able to use the user friendly interface of TOP STUDIO to calculate properties of compounds. The software will enable education on topological properties of electrons in solids at advanced undergraduate and graduate levels. The project will involve and train graduate students and postdocs who will receive a unique interdisciplinary training in computational and theoretical condensed matter physics and materials. Providing well-written objected oriented modern software, using a standardized interface will allow for broader participation of the community in this research area and for educating the next generation.TECHICAL SUMMARY The Division of Materials Research and the Division of Advanced Cyberinfrastructure contribute funds to this award. It supports development of new computational methods combining robust electronic structure methods with an advanced many-body theory and machine learning algorithms. The main objective of this project is to develop and implement new methods for the search and discovery of advanced quantum materials with novel magnetic, superconducting and transport characteristics that rely on topologically protected states. The search includes materials that are Weyl-Dirac semimetals and topological superconductors. The research nurtures the close interaction between theory and computation. The computational approach is based on density functional theory, which is able to predict some properties of many materials including metals and semiconductors, combined with dynamical mean field theory, which includes some effects of strong correlation. To tackle the variety of interactions needed to discover various topological phases in real materials new theoretical methods, powerful algorithms, and computer programs will be developed. Linear response theory will be utilized in order to predict full wave vector and frequency dependent interactions controlling topological superconductivity phenomena. Floquet theory will be used to study topological phases induced by time-dependent fields. The resulting software will contribute to the tools used to search, predict, and discover new materials with topologically protected states of electrons.The new TOP STUDIO software will be created with a user-friendly interface designed to allow materials exploration by non-experts, by materials scientists and engineers and by theoretical solid-state physicists. TOP STUDIO will promote teaching, training and learning with an educational mode, which can be used to teach students about topological states of quantum matter to students using visualization techniques.
非技术总结材料研究部和先进网络基础设施部为该奖项提供资金。它支持理论和计算研究的密切互动,以开发计算和预测材料性质的新的理论和计算方法和工具,并使用它们来发现具有新功能的新材料。PI将开发一种方法,将基于密度泛函理论的预测计算方法与许多相互作用粒子的量子力学理论和计算机科学的方法相结合。PI将专注于发现预计存在于材料中的电子的新状态,并涉及电子组织自身的新方式。组织遵循由拓扑学支配的规则,拓扑学是一种数学理论,专注于通过变形保持不变的对象的属性。虽然微妙,但拓扑相是健壮的,能够经受住材料的变形和缺陷。这些新的拓扑态包括新类型的绝缘体、金属和超导体。这些新工具将使PI和社区能够预测具有新的电子拓扑态的特定材料,这些材料可能出现在拓扑半金属和超导体等材料中。这项研究工作包括开发和传播一个新的软件工具TOP STUDIO,它将加强和简化对新物质状态的具体材料研究的研究。美国和其他国家的实验学家、材料科学家和工程师将能够使用顶级工作室的用户友好界面来计算化合物的性质。该软件将使高级本科生和研究生能够学习固体中电子的拓扑性质。该项目将涉及和培训研究生和博士后,他们将接受计算和理论凝聚态物理和材料方面的独特跨学科培训。提供编写良好的面向对象的现代软件,使用标准化的接口,将允许社区更广泛地参与这一研究领域,并教育下一代。技术摘要材料研究部和先进网络基础设施部为该奖项提供资金。它支持将稳健的电子结构方法与先进的多体理论和机器学习算法相结合的新计算方法的开发。该项目的主要目标是开发和实施新的方法来搜索和发现先进的量子材料,这些材料具有依赖于拓扑保护态的新颖的磁性、超导和输运特性。搜索的材料包括Weyl-Dirac半金属和拓扑超导体。这项研究孕育了理论和计算之间的密切互动。计算方法是基于密度泛函理论,它能够预测包括金属和半导体在内的许多材料的某些性质,并结合动态平均场理论,它包含了一些强关联的效应。为了解决在实际材料中发现各种拓扑相所需的各种相互作用,将开发新的理论方法、强大的算法和计算机程序。线性响应理论将被用来预测控制拓扑超导现象的全波矢和频率相关相互作用。弗洛奎理论将被用来研究含时场致的拓扑相。由此产生的软件将有助于搜索、预测和发现具有拓扑保护电子状态的新材料。新的顶级工作室软件将创建一个用户友好的界面,允许非专家、材料科学家和工程师以及理论固态物理学家进行材料探索。TOP STUDIO将以一种教育模式促进教学、培训和学习,这种模式可以用可视化技术向学生传授量子物质的拓扑态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashvin Vishwanath其他文献

Dynamical Signature of Fractionalization at the Deconfined Quantum Critical Point
解禁量子临界点处的分步动力学特征
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nvsen Ma;Guang-Yu Sun;Yi-Zhuang You;Cenke Xu;Ashvin Vishwanath;Anders W. S;vik;Zi Yang Meng
  • 通讯作者:
    Zi Yang Meng
Observation of the axion quasiparticle in 2D MnBi2Te4
二维 MnBi2Te4 中轴子准粒子的观测
  • DOI:
    10.1038/s41586-025-08862-x
  • 发表时间:
    2025-04-16
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jian-Xiang Qiu;Barun Ghosh;Jan Schütte-Engel;Tiema Qian;Michael Smith;Yueh-Ting Yao;Junyeong Ahn;Yu-Fei Liu;Anyuan Gao;Christian Tzschaschel;Houchen Li;Ioannis Petrides;Damien Bérubé;Thao Dinh;Tianye Huang;Olivia Liebman;Emily M. Been;Joanna M. Blawat;Kenji Watanabe;Takashi Taniguchi;Kin Chung Fong;Hsin Lin;Peter P. Orth;Prineha Narang;Claudia Felser;Tay-Rong Chang;Ross McDonald;Robert J. McQueeney;Arun Bansil;Ivar Martin;Ni Ni;Qiong Ma;David J. E. Marsh;Ashvin Vishwanath;Su-Yang Xu
  • 通讯作者:
    Su-Yang Xu
Circular-polarization-selective perfect reflection from chiral superconductors
手性超导体的圆偏振选择性完美反射
  • DOI:
    10.1038/s41467-025-61658-5
  • 发表时间:
    2025-07-14
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Junyeong Ahn;Ashvin Vishwanath
  • 通讯作者:
    Ashvin Vishwanath
Valley dependent band engineering in twisted bilayer BC3
扭曲双层 BC3 中的谷相关能带工程
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toshikaze Kariyado;Ashvin Vishwanath
  • 通讯作者:
    Ashvin Vishwanath
Qutrit toric code and parafermions in trapped ions
囚禁离子中的三量子比特拓扑码和玻色子
  • DOI:
    10.1038/s41467-025-61391-z
  • 发表时间:
    2025-07-08
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Mohsin Iqbal;Anasuya Lyons;Chiu Fan Bowen Lo;Nathanan Tantivasadakarn;Joan Dreiling;Cameron Foltz;Thomas M. Gatterman;Dan Gresh;Nathan Hewitt;Craig A. Holliman;Jacob Johansen;Brian Neyenhuis;Yohei Matsuoka;Michael Mills;Steven A. Moses;Peter Siegfried;Ashvin Vishwanath;Ruben Verresen;Henrik Dreyer
  • 通讯作者:
    Henrik Dreyer

Ashvin Vishwanath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashvin Vishwanath', 18)}}的其他基金

Topological order and Anyons in and out of Equilibrium
拓扑序和平衡态内外的任意子
  • 批准号:
    2220703
  • 财政年份:
    2022
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Continuing Grant
CDS&E: Collaborative Research: Computational Design of Topological Superconductors and Weyl - Dirac Semimetals
CDS
  • 批准号:
    1827925
  • 财政年份:
    2017
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Continuing Grant
Order, Topology and Transport in Quantum Matter
量子物质的秩序、拓扑和输运
  • 批准号:
    1206728
  • 财政年份:
    2012
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Continuing Grant
CAREER: Dynamics, Transport and Novel Phenomena at Quantum Phase Transitions
职业:量子相变的动力学、输运和新现象
  • 批准号:
    0645691
  • 财政年份:
    2007
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 30.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了