Order, Topology and Transport in Quantum Matter

量子物质的秩序、拓扑和输运

基本信息

  • 批准号:
    1206728
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Technical SummaryThis award supports theoretical research and education on quantum condensed matter. It seeks to deepen our understanding of novel quantum states of matter that emerge in many body systems, and to identify experimental signatures and realizations in solids and ultracold quantum gases. While the Landau paradigm of condensed matter accounts for conventional metals and broken symmetry states, here the focus is largely on phases that lie beyond this framework. For example, topological insulators and Weyl semi-metals are phases that admit a description in terms of non-interacting particles, but they possess certain characteristic topological properties. Transport of charge, energy and momentum in the presence of external perturbations are expected to reveal fundamental properties of such phases. These and the interplay with conventional orders, in particular topological defects such as vortices and domain walls, are proposed for study in the first part of this project. The second part of this project addresses strongly correlated topological phases. Promising experimental regimes to realize them, such as flat bands of frustrated lattices and frustrated quantum magnets, will be investigated. Theoretical studies on analogues of fractional quantum Hall states, as well as generalizations to three dimensions are also proposed. Pinpointing the subtle correlations that characterize such states requires new probes, in particular those that can measure non-local properties. Proposing and evaluating such approaches will form the third focus area of this project.This award also supports the education of a graduate student and a postdoctoral research associate at the frontiers of modern theoretical condensed matter physics. The PI will develop a new graduate-level course that cuts across traditional disciplines and integrates the methods and results from the research above. The results will also be disseminated via public lectures and non-technical summaries posted on a public website. From a technological perspective, the novel properties of the quantum states of matter to be investigated in this project can potentially lead to discovery of new materials with useful functionalities and future applications.NonTechnical SummaryThis award supports theoretical research and education on novel states of condensed matter systems. Although quantum mechanical laws govern the microscopic building blocks of matter, the properties observed on a macroscopic scale are often classical; the magnetization of an iron-based magnet being one well-known example. More recently, however, attention has been focused on states of matter which are intrinsically quantum mechanical even at the macroscopic scale, such as "quantum Hall states" as well as "quantum spin liquids" which are actively being sought for in magnetic materials. A key feature of these novel phases is a long range entanglement that is a unique feature intrinsic to quantum mechanical behavior. In this project, the PI and his group will seek to deepen our understanding of such states of matter in order to determine promising arenas for their realization and to propose experimental tests that would signal their presence. It is hoped that these advances in our understanding will eventually lead to a better control over these novel states. This award also supports the education of a graduate student and a postdoctoral research associate at the frontiers of modern theoretical condensed matter physics. The PI will develop a new graduate-level course that cuts across traditional disciplines and integrates the methods and results from the research above. The results will also be disseminated via public lectures and non-technical summaries posted on a public website. From a technological perspective, the novel properties of the quantum states of matter to be investigated in this project can potentially lead to discovery of new materials with useful functionalities and future applications.
技术综述该奖项支持量子凝聚态的理论研究和教育。它试图加深我们对出现在许多身体系统中的物质的新量子态的理解,并识别固体和超冷量子气体中的实验签名和实现。虽然凝聚态的朗道范式解释了传统的金属和破缺的对称态,但这里的重点主要是位于这个框架之外的相。例如,拓扑绝缘体和Weyl半金属是允许用不相互作用的粒子来描述的相,但它们具有某些特征的拓扑性质。在存在外部扰动的情况下,电荷、能量和动量的输运有望揭示这些相的基本性质。这些以及与常规有序的相互作用,特别是拓扑缺陷,如涡旋和磁畴壁,被提出在本项目的第一部分中进行研究。本项目的第二部分涉及强相关的拓扑阶段。实现它们的有希望的实验机制将被研究,例如受挫晶格的平带和受挫量子磁体。还提出了分数量子霍尔态的类比的理论研究,以及对三维的推广。准确地确定这种状态的微妙关联需要新的探测器,特别是那些可以测量非局部性质的探测器。该奖项还支持现代理论凝聚态物理学前沿领域的研究生和博士后研究助理的教育。PI将开发一门新的研究生课程,跨越传统学科,整合上述研究的方法和成果。结果还将通过公共讲座和在公共网站上张贴的非技术性摘要来传播。从技术的角度来看,这个项目要研究的物质量子态的新性质可能会导致发现具有有用功能和未来应用的新材料。非技术概述该奖项支持关于凝聚态系统新态的理论研究和教育。尽管量子力学定律支配着物质的微观构件,但在宏观尺度上观察到的性质往往是经典的;铁基磁体的磁化就是一个众所周知的例子。然而,最近人们的注意力集中在即使在宏观尺度上也是量子力学的物质状态上,例如正在磁性材料中积极寻找的“量子霍尔态”以及“量子自旋液体”。这些新相的一个关键特征是长程纠缠,这是量子力学行为固有的一个独特特征。在这个项目中,PI和他的团队将寻求加深我们对这种物质状态的理解,以便确定它们实现的有希望的领域,并提出表明它们存在的实验测试。人们希望,我们在理解上的这些进步最终将导致对这些新状态的更好控制。该奖项还支持现代理论凝聚态物理前沿的研究生和博士后研究助理的教育。PI将开发一门新的研究生课程,跨越传统学科,整合上述研究的方法和成果。结果还将通过公共讲座和在公共网站上张贴的非技术性摘要来传播。从技术角度来看,该项目要研究的物质量子态的新颖性质可能会导致发现具有有用功能和未来应用的新材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashvin Vishwanath其他文献

Dynamical Signature of Fractionalization at the Deconfined Quantum Critical Point
解禁量子临界点处的分步动力学特征
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nvsen Ma;Guang-Yu Sun;Yi-Zhuang You;Cenke Xu;Ashvin Vishwanath;Anders W. S;vik;Zi Yang Meng
  • 通讯作者:
    Zi Yang Meng
Observation of the axion quasiparticle in 2D MnBi2Te4
二维 MnBi2Te4 中轴子准粒子的观测
  • DOI:
    10.1038/s41586-025-08862-x
  • 发表时间:
    2025-04-16
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jian-Xiang Qiu;Barun Ghosh;Jan Schütte-Engel;Tiema Qian;Michael Smith;Yueh-Ting Yao;Junyeong Ahn;Yu-Fei Liu;Anyuan Gao;Christian Tzschaschel;Houchen Li;Ioannis Petrides;Damien Bérubé;Thao Dinh;Tianye Huang;Olivia Liebman;Emily M. Been;Joanna M. Blawat;Kenji Watanabe;Takashi Taniguchi;Kin Chung Fong;Hsin Lin;Peter P. Orth;Prineha Narang;Claudia Felser;Tay-Rong Chang;Ross McDonald;Robert J. McQueeney;Arun Bansil;Ivar Martin;Ni Ni;Qiong Ma;David J. E. Marsh;Ashvin Vishwanath;Su-Yang Xu
  • 通讯作者:
    Su-Yang Xu
Circular-polarization-selective perfect reflection from chiral superconductors
手性超导体的圆偏振选择性完美反射
  • DOI:
    10.1038/s41467-025-61658-5
  • 发表时间:
    2025-07-14
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Junyeong Ahn;Ashvin Vishwanath
  • 通讯作者:
    Ashvin Vishwanath
Valley dependent band engineering in twisted bilayer BC3
扭曲双层 BC3 中的谷相关能带工程
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toshikaze Kariyado;Ashvin Vishwanath
  • 通讯作者:
    Ashvin Vishwanath
Qutrit toric code and parafermions in trapped ions
囚禁离子中的三量子比特拓扑码和玻色子
  • DOI:
    10.1038/s41467-025-61391-z
  • 发表时间:
    2025-07-08
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Mohsin Iqbal;Anasuya Lyons;Chiu Fan Bowen Lo;Nathanan Tantivasadakarn;Joan Dreiling;Cameron Foltz;Thomas M. Gatterman;Dan Gresh;Nathan Hewitt;Craig A. Holliman;Jacob Johansen;Brian Neyenhuis;Yohei Matsuoka;Michael Mills;Steven A. Moses;Peter Siegfried;Ashvin Vishwanath;Ruben Verresen;Henrik Dreyer
  • 通讯作者:
    Henrik Dreyer

Ashvin Vishwanath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashvin Vishwanath', 18)}}的其他基金

Topological order and Anyons in and out of Equilibrium
拓扑序和平衡态内外的任意子
  • 批准号:
    2220703
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
CDS&E: Collaborative Research: Computational Design of Topological Superconductors and Weyl - Dirac Semimetals
CDS
  • 批准号:
    1827925
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
CDS&E: Collaborative Research: Computational Design of Topological Superconductors and Weyl - Dirac Semimetals
CDS
  • 批准号:
    1411343
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
CAREER: Dynamics, Transport and Novel Phenomena at Quantum Phase Transitions
职业:量子相变的动力学、输运和新现象
  • 批准号:
    0645691
  • 财政年份:
    2007
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似海外基金

LEAPS-MPS: Unveiling the Interplay of Chiral Transport, Magnetism, and Topology in Weyl Magnets: A Magneto-Optical Investigation
LEAPS-MPS:揭示外尔磁体中手性输运、磁性和拓扑的相互作用:磁光研究
  • 批准号:
    2317013
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Novel magnon transport phenomena under spin textures with nontrivial topology and symmetry
具有非平凡拓扑和对称性的自旋纹理下的新型磁振子输运现象
  • 批准号:
    18H03685
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: Symmetry, Topology, and Transport in Strongly Interacting Quantum Many-Body Systems
职业:强相互作用量子多体系统中的对称性、拓扑和输运
  • 批准号:
    1753240
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
CAREER: Anomalous Quantum Transport - Interactions, Disorder, Topology
职业:反常量子传输 - 相互作用、无序、拓扑
  • 批准号:
    1653661
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Transport phenomena induced by the interplay of topology and symmetry in topological superconductors
拓扑超导体中拓扑和对称性相互作用引起的输运现象
  • 批准号:
    16K05448
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quasi One-Dimensional Systems with Nontrivial Topology: Nonequilibrium, Transport and Edge States
具有非平凡拓扑的准一维系统:非平衡、传输和边缘态
  • 批准号:
    318596529
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
    Research Units
coupling between turbulent transport and magnetic topology
湍流传输与磁拓扑之间的耦合
  • 批准号:
    15H02336
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Transport, Entanglement and Topology in Correlated Many-Particle Systems
相关多粒子系统中的输运、纠缠和拓扑
  • 批准号:
    1442366
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
RUI: Topology, Gauge Fields and Phase Coherence in the Transport Dynamics of Ultracold Atoms
RUI:超冷原子输运动力学中的拓扑、规范场和相位相干性
  • 批准号:
    1313871
  • 财政年份:
    2013
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
SHINE: Coronal and Interplanetary Magnetic Field: Structure, Topology, Flux Tubes, Transport, and Application to Energetic Particles
SHINE:日冕和行星际磁场:结构、拓扑、通量管、输运以及高能粒子的应用
  • 批准号:
    1156094
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了