Resonance Phenomena in Wave Scattering

波散射中的共振现象

基本信息

  • 批准号:
    1411393
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

ShipmanDMS-1411393 Optical and electronic devices, as varied and complex as they come, are based on a common underlying physical principle called resonance. This principle lies behind lasers, filters, antennas, and light-emitting diodes, as well as devices whose components operate at the nanoscale. The investigator studies efficient and robust ways to exploit the phenomena of resonance in device design and how to control variations in device performance resulting from inevitable manufacturing imperfections. The theory of resonance has deep mathematical roots, which are developed to gain a better working understanding of new physical phenomena for the design of modern-day devices. The project trains graduate and undergraduate students to develop skills at the interfaces of mathematics, physics, and engineering, paying special attention to bridging communication gaps between the disciplines. Undergraduate students are involved in creating an online computational tool for virtual experimentation and design of optical structures. Four problems of resonance are studied. (1) An electromagnetic resonance of a doubly periodic waveguide is associated with a complex eigenvalue of the Maxwell equations, which encodes the frequency and spectral width of the resonance. The investigator considers new waveguide structures that allow both characteristics of a resonance to be tuned by varying the angle of incidence of a source wave. This ability to tune is precluded in existing constructions of resonant waveguide modes due to the symmetry that they utilize. This symmetry is broken by exploiting non-reciprocal materials, special geometries, and bifurcations of symmetric guided modes into antisymmetric modes, to construct asymmetric tunable waveguide resonances. (2) Embedded eigenvalues in locally perturbed periodic quantum graphs are responsible for resonance phenomena in two-dimensional molecular structures such as bi-layer graphene. Building on a recent result of his on embedded eigenvalues, the investigator employs asymmetry to control resonant scattering characteristics in quantum graphs. (3) Even in materials with small coefficients of nonlinearity, field amplification due to resonance causes strongly nonlinear effects, such as bistability and hysteresis. The investigator quantifies these effects in a tractable model in which a photon transmission line is coupled to a local exciton field, producing a nonlinear field of photon-exciton quasiparticles known as polaritons. (4) Random fluctuations of a waveguide's material properties and geometry introduce variability into features of resonance, such as their central frequency and spectral width. The investigator calculates this variability using perturbation analysis of the scattering matrix where the perturbative parameters are random variables.
尽管光学和电子设备种类繁多且复杂,但它们都是基于一个共同的基本物理原理,即共振。这一原理存在于激光器、滤光片、天线、发光二极管以及其组件在纳米级运行的设备背后。研究者研究有效和稳健的方法来利用共振现象的设备设计,以及如何控制设备性能的变化,导致不可避免的制造缺陷。共振理论有着深刻的数学根源,它的发展是为了更好地理解现代设备设计中的新物理现象。该项目培养研究生和本科生在数学、物理和工程方面的技能,特别注意弥合学科之间的沟通差距。本科学生参与创建一个用于虚拟实验和光学结构设计的在线计算工具。研究了共振的四个问题。(1)双周期波导的电磁共振与麦克斯韦方程组的复特征值相关联,复特征值编码了共振的频率和谱宽。研究者考虑了一种新的波导结构,这种结构允许通过改变源波的入射角来调节共振的两个特性。由于共振波导模式的对称性,这种调谐能力在现有结构中被排除在外。通过利用非互易材料、特殊几何形状和对称导模分岔到反对称模来打破这种对称性,以构建非对称可调谐波导共振。(2)局部摄动周期量子图中的嵌入特征值导致了双层石墨烯等二维分子结构中的共振现象。在他最近关于嵌入特征值的研究结果的基础上,研究者利用不对称性来控制量子图中的共振散射特性。(3)即使在非线性系数较小的材料中,共振引起的场放大也会引起强烈的非线性效应,如双稳性和迟滞性。研究者在一个易于处理的模型中量化了这些效应,在这个模型中,光子传输线与一个局部激子场耦合,产生一个被称为极化子的光子激子准粒子的非线性场。(4)波导的材料特性和几何结构的随机波动引入了共振特征的可变性,例如它们的中心频率和谱宽。研究者计算这种可变性使用散射矩阵的扰动分析,其中扰动参数是随机变量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Shipman其他文献

Stephen Shipman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Shipman', 18)}}的其他基金

Phenomena of Periodic Layered Media
周期性层状介质现象
  • 批准号:
    2206037
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design of Responsive Materials and Structures
合作研究:响应材料和结构的优化设计
  • 批准号:
    2009303
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Asymmetry, Embedded Eigenvalues, and Resonance for Differential Operators
微分算子的不对称性、嵌入特征值和共振
  • 批准号:
    1814902
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Waves and Resonance in Photonic Structures
光子结构中的波和共振
  • 批准号:
    0807325
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Electromagnetic Resonance in Periodic Structures
周期性结构中的电磁共振
  • 批准号:
    0505833
  • 财政年份:
    2005
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

Wall-model construction for shock wave and thermal turbulent boundary layer interactions in a rocket engine nozzle and investigation of a nozzle self-oscillation phenomena
火箭发动机喷嘴中冲击波和热湍流边界层相互作用的壁模型构建以及喷嘴自振荡现象的研究
  • 批准号:
    22KJ0235
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a THz wave pump electron diffraction probe system for study on strong electric field induced phenomena in materials
开发太赫兹波泵电子衍射探针系统用于研究材料中的强电场感应现象
  • 批准号:
    23H01101
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonlinear wave phenomena excited on vortex lines in quantum turbulence
量子湍流中涡线激发的非线性波现象
  • 批准号:
    22K03518
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Experiments, theories, and applications of space-time-dependent metamaterials that allow visualization of wave phenomena
时空相关超材料的实验、理论和应用,使波动现象可视化
  • 批准号:
    22H01930
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Inverse Problems for Nonlinear Wave Phenomena
非线性波现象的反问题
  • 批准号:
    2154489
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Multi-scale models for nonlinear wave-induced atmospheric phenomena
非线性波引起的大气现象的多尺度模型
  • 批准号:
    RGPIN-2018-05296
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Applied Analysis for Emergent Nonlinear Wave Phenomena
突现非线性波现象的应用分析
  • 批准号:
    2108029
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Travel Funds for The Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena – Metamaterials 2020; New York, New York; September 28 to October 3, 2020
第十四届国际新浪潮现象人造材料大会旅费 — 超材料 2020;
  • 批准号:
    2028433
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了