Asymmetry, Embedded Eigenvalues, and Resonance for Differential Operators

微分算子的不对称性、嵌入特征值和共振

基本信息

  • 批准号:
    1814902
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This project addresses the mathematical foundations of physical principles that underlie the design of optical and electronic devices. The pervading concept is the principle of "resonance", which lies behind lasers, filters, antennas, and light-emitting diodes, etc. The technical term "embedded eigenvalue" in the title refers to a mathematical concept that is intimately intertwined with resonance; it is related to specific configurations of electromagnetic fields in a structure or device and how they interact with external inputs. The project combines theory with computer simulations. The principal investigator runs a research seminar, which integrates seasoned researchers, a post-doctoral associate, doctoral students, and undergraduate students, each of whom is involved in a specific aspect of the project. Emphasis is placed on developing methods at the interfaces of mathematics, physics, and engineering, paying special attention to bridging communication gaps between the disciplines and training a new generation of researchers who can work in an interdisciplinary setting.Classically familiar examples of embedded eigenvalues are induced by finite symmetry groups of a differential operator. Recent demonstrations of non-symmetry-induced spectrally embedded bound states in electromagnetic structures have opened the way toward a richer set of resonance phenomena. This project develops a theory of asymmetry and embedded eigenvalues. The investigations employ functional analysis and partial differential equations, complex analysis, spectral theory, and analytic geometry. These are the specific problems of the project: (1) It investigates the precise connection between asymmetry, embedded eigenvalues, and reducibility of an analytic variety called the "Fermi surface" for periodic operators, including the partial differential equations (PDE) of physical systems and mathematical graph models; (2) The principal investigator's recent work shows that bilayer quantum-graph graphene is special in that its Fermi surface is always reducible, regardless of the type of asymmetries in the potentials on the edges connecting the two sheets of graphene. The project seeks the mathematical reasons behind this and the PDE counterpart; (3) The investigator and collaborators are developing numerical algorithms for probing the very complex situation of embedded eigenvalues for the Maxwell equations of electromagnetics; (4) The existence and construction of embedded eigenvalues for the Neumann-Poincare boundary-integral operator that is fundamental to the theory of "plasmonic resonances" is also being studied.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及光学和电子设备设计的物理原理的数学基础。这个普遍的概念是“谐振”的原则,它是激光器,滤波器,天线和发光二极管等的背后。标题中的技术术语“嵌入本征值”是指一个与谐振密切相关的数学概念;它与结构或设备中电磁场的特定配置以及它们如何与外部输入相互作用有关。该项目将理论与计算机模拟相结合。首席研究员主持一个研究研讨会,其中包括经验丰富的研究人员,博士后助理,博士生和本科生,每个人都参与了该项目的一个特定方面。重点放在开发方法的接口的数学,物理和工程,特别注意弥合学科之间的沟通差距,培养新一代的研究人员谁可以在一个跨学科的setting.Classically熟悉的例子嵌入特征值是由有限对称群的微分算子诱导。最近的非对称性诱导的光谱嵌入束缚态的电磁结构的演示开辟了一条道路,走向更丰富的一套共振现象。本计画发展不对称性与嵌入本征值的理论。研究采用泛函分析和偏微分方程、复分析、谱理论和解析几何。本项目的具体问题是:(1)研究周期算子的非对称性、嵌入特征值和称为“费米面”的解析变量的约化之间的精确联系,包括物理系统和数学图形模型的偏微分方程(PDE);(2)主要研究者最近的工作表明,双层量子图形石墨烯的特殊之处在于它的费米面总是可还原的,而不管连接两个石墨烯片的边缘上的电势的不对称性的类型。(3)研究人员和合作者正在开发数值算法,以探测电磁学麦克斯韦方程组嵌入本征值的非常复杂的情况;(4)Neumann-Poincare边界积分算子的嵌入本征值的存在性和构造,这是“等离子体共振”理论的基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reducible Fermi Surface for Multi-layer Quantum Graphs Including Stacked Graphene
  • DOI:
    10.1007/s00220-021-04120-z
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    L. Fisher;Wei Li;S. Shipman
  • 通讯作者:
    L. Fisher;Wei Li;S. Shipman
Infinitely Many Embedded Eigenvalues for the Neumann--Poincaré Operator in 3D
3D 中 Neumann-Poincaré 算子的无限多个嵌入特征值
  • DOI:
    10.1137/21m1400365
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Li, Wei;Perfekt, Karl-Mikael;Shipman, Stephen P.
  • 通讯作者:
    Shipman, Stephen P.
THE INVERSE PROBLEM FOR A SPECTRAL ASYMMETRY FUNCTION OF THE SCHRÖDINGER OPERATOR ON A FINITE INTERVAL
  • DOI:
    10.1112/mtk.12105
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Malcolm Brown;K. Schmidt;S. Shipman;I. Wood
  • 通讯作者:
    Malcolm Brown;K. Schmidt;S. Shipman;I. Wood
Irreducibility of the Fermi surface for planar periodic graph operators
平面周期图算子费米面的不可约性
  • DOI:
    10.1007/s11005-020-01311-y
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Li, Wei;Shipman, Stephen P.
  • 通讯作者:
    Shipman, Stephen P.
Embedded eigenvalues for the Neumann-Poincare operator
Neumann-Poincare 算子的嵌入特征值
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Shipman其他文献

Stephen Shipman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Shipman', 18)}}的其他基金

Phenomena of Periodic Layered Media
周期性层状介质现象
  • 批准号:
    2206037
  • 财政年份:
    2022
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design of Responsive Materials and Structures
合作研究:响应材料和结构的优化设计
  • 批准号:
    2009303
  • 财政年份:
    2020
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Resonance Phenomena in Wave Scattering
波散射中的共振现象
  • 批准号:
    1411393
  • 财政年份:
    2014
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Waves and Resonance in Photonic Structures
光子结构中的波和共振
  • 批准号:
    0807325
  • 财政年份:
    2008
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Electromagnetic Resonance in Periodic Structures
周期性结构中的电磁共振
  • 批准号:
    0505833
  • 财政年份:
    2005
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Embedded Internet体系结构及应用研究
  • 批准号:
    69873007
  • 批准年份:
    1998
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Collaborative R&D
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10106857
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    EU-Funded
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
  • 批准号:
    2416207
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
INSPIRE - Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE - 交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10091666
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    EU-Funded
Solving cashflow shortfalls in the construction industry using digital payments with embedded finance
使用数字支付和嵌入式金融解决建筑行业的现金流短缺
  • 批准号:
    10097800
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Collaborative R&D
CRII: SHF: Systematic Construction of Teaching Language Progressions for Embedded Domain-Specific Languages
CRII:SHF:嵌入式领域特定语言教学语言进程的系统构建
  • 批准号:
    2348408
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Applying a Program Science approach for strengthening partnerships and advancing embedded research to optimize public health programming for HIV and sexually transmitted and blood-borne infections among criminalized populations in the Global South
应用计划科学方法来加强伙伴关系并推进嵌入式研究,以优化南半球犯罪人群中针对艾滋病毒、性传播和血源性感染的公共卫生规划
  • 批准号:
    502554
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
INSPIRE: Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE:交叉参与空间:包容性、弹性、嵌入性
  • 批准号:
    10105009
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    EU-Funded
Decision-Embedded Deep Learning for Transit Systems
交通系统决策嵌入式深度学习
  • 批准号:
    2409847
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
参与的交叉空间:包容性、弹性、嵌入式
  • 批准号:
    10105607
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了