PDE solvers: Frequency-domain, time-domain and hybrids---with applications to materials science and engineering
PDE 求解器:频域、时域和混合求解器——在材料科学和工程中的应用
基本信息
- 批准号:1411876
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This effort concerns development of mathematical tools which can be used to make accurate predictions about physical phenomena, with impact on areas of significant societal interest such as electrical engineering (optics, electronics, photonics) communications (antennas), atmospheric science, medicine (tomography, imaging, diagnostic and therapeutic ultrasound, targeted drug delivery), military and civilian remote sensing (radar, sonar, stealth), renewable energy production and energy policy (Doppler signature of wind farms) etc. The methodologies to be pursued represent a change in paradigm in the mathematical approach. Oversimplifying for the sake of clarity, the new methods can be visualized as using some sort of a computational version of the french curve tool rather than a straight ruler in such a way that much more accurate representations of physical reality as well as greatly reduced computing costs result -- to the point that previously unfeasible simulations become possible. While such "smooth-curve representations" (or, in mathematical nomenclature, high-order/spectral methods) have been available for many years, the novelty of the proposed work is that it enables utilization of such highly accurate methodologies at vastly reduced computing costs and for highly complex engineering problems--such as those mentioned above--including complex electronic components, full vehicles, etc.Technically, this project concerns development and analysis of high-performance, highly accurate numerical algorithms for solution of Partial Differential Equations (PDE), with application to a wide range of problems in materials science and engineering. The proposed algorithms emphasize accuracy, efficiency as well as generally applicability on the basis of spectral and high-order methodologies; the associated theoretical discussions, in turn, seek to provide necessary background and performance guarantees. This effort considers two broad application areas, namely, I. Frequency-domain, time-harmonic acoustics and electromagnetism, and II. Time-domain PDE in general three-dimensional domains, with applicability to acoustics, electromagnetism and elasticity as well as compressible and incompressible fluid-dynamics.
这项工作涉及数学工具的开发,可用于对物理现象进行准确预测,对具有重要社会意义的领域产生影响,例如电气工程(光学、电子、光子)通信(天线)、大气科学、医学(断层扫描、成像、诊断和治疗超声、靶向药物输送)、军事和民用遥感(雷达、声纳、隐形)、可再生能源生产和能源 政策(风电场的多普勒特征)等。所追求的方法代表了数学方法范式的变化。为了清楚起见,我们将新方法可视化为使用某种计算版本的法式曲线工具而不是直尺,从而可以更准确地表示物理现实,并大大降低计算成本,从而使以前不可行的模拟成为可能。虽然这种“平滑曲线表示”(或者,用数学术语来说,高阶/谱方法)已经存在很多年了,但所提出的工作的新颖之处在于,它能够以大大降低的计算成本利用这种高精度的方法,并解决高度复杂的工程问题(例如上面提到的那些问题),包括复杂的电子元件、整车等。从技术上讲,该项目涉及开发和分析 用于求解偏微分方程 (PDE) 的高性能、高精度数值算法,可应用于材料科学和工程中的各种问题。所提出的算法在谱和高阶方法的基础上强调准确性、效率以及普遍适用性;相关的理论讨论反过来又寻求提供必要的背景和绩效保证。这项工作考虑了两个广泛的应用领域,即 I. 频域、时谐声学和电磁学,以及 II. 频域、时谐声学和电磁学。一般三维域中的时域偏微分方程,适用于声学、电磁学和弹性以及可压缩和不可压缩流体动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oscar Bruno其他文献
Study of the gas chromatographic behavior of selected alcohols and amines
- DOI:
10.1007/s00216-010-4418-9 - 发表时间:
2010-11-30 - 期刊:
- 影响因子:3.800
- 作者:
Yasar Thewalim;Oscar Bruno;Anders Colmsjö - 通讯作者:
Anders Colmsjö
Spatial scale dependence of fault physical parameters and its implications for the analysis of earthquake dynamics from the lab to fault systems
断层物理参数的空间尺度依赖性及其对从实验室到断层系统的地震动力学分析的启示
- DOI:
10.1016/j.epsl.2025.119481 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:5.100
- 作者:
Davide Zaccagnino;Oscar Bruno;Carlo Doglioni - 通讯作者:
Carlo Doglioni
Oscar Bruno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oscar Bruno', 18)}}的其他基金
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Fast Spectral Solvers for Partial Differential Equations in General Domains
一般域中偏微分方程的快速谱求解器
- 批准号:
1714169 - 财政年份:2017
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Control of Magnetic Chemotherapy
合作研究:磁化疗的建模和控制
- 批准号:
1261975 - 财政年份:2013
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Rapidly-convergent, high-performance PDE solvers for materials-science and engineering applications: theory, implementation and applications.
适用于材料科学和工程应用的快速收敛、高性能 PDE 求解器:理论、实现和应用。
- 批准号:
1008631 - 财政年份:2010
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CDI-Type II: Collaborative Research - Simulation of ultrasonic-wave propagation with application to cancer therapy.
CDI-Type II:协作研究 - 模拟超声波传播及其在癌症治疗中的应用。
- 批准号:
0835812 - 财政年份:2008
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Rapidly-convergent, high-performance PDE solvers for materials-science and engineering applications: theory, implementation and applications.
适用于材料科学和工程应用的快速收敛、高性能 PDE 求解器:理论、实现和应用。
- 批准号:
0707564 - 财政年份:2007
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Microscopic properties and physical behavior of materials and media.
材料和介质的微观特性和物理行为。
- 批准号:
0408040 - 财政年份:2004
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Microscopic Properties and Physical Behavior of Materials and Media
材料和介质的微观特性和物理行为
- 批准号:
0104531 - 财政年份:2001
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Mathematical Prediction of the Physical Properties of Materials and Media
材料和介质物理特性的数学预测
- 批准号:
9816802 - 财政年份:1998
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
相似海外基金
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
- 批准号:
DP240102682 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Discovery Projects
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
- 批准号:
2336391 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Application of perfect sampling with SAT/SMT solvers
SAT/SMT 求解器完美采样的应用
- 批准号:
23K10998 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
- 批准号:
23K11047 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delta-Complete SMT Solvers for Learning and Optimization Algorithms
用于学习和优化算法的 Delta-Complete SMT 求解器
- 批准号:
2869702 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Studentship
Development of Efficient Solvers for Ill-conditioned Nonlinear Equations Using Mixed- and Multiple-precision Floating-point Arithmetic
使用混合和多精度浮点运算开发病态非线性方程的高效求解器
- 批准号:
23K11127 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




