Analysis and Control of Mathematical Models of Fluttering Plates
颤振板数学模型分析与控制
基本信息
- 批准号:1412238
- 负责人:
- 金额:$ 11.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the fundamental problems in the field of aeroelasticity is the prediction and control of the instability known as aeroelastic flutter. Flutter occurs in a flexible structure immersed in a gas flow when aerodynamic loading excites the natural oscillatory modes of the structure; the result is a potentially violent interaction between the displacements of the structure and perturbations in the gas flow field. This phenomenon may occur in a multitude of applications including: buildings and bridges in strong winds, flag-like structures, the human respiratory system, and panel and flap structures on air and land vehicles. In the context of aircraft, flutter is a key concern. If the magnitude of the structural displacements due to flutter is sufficiently large, structural failure can occur. Small oscillations sustained over long periods of time may also bring about costly and/or hazardous fatigue in the structure. Very recently, the idea of harnessing flutter (naturally occurring, or induced) has been suggested to provide an alternative source of energy via piezoelectric "harvesting". For these reasons there is great interest in producing mathematical models that describe the flutter phenomenon in order to gain insight into the mechanisms of flow-structure coupling and predict the dynamics of the system based on its physical parameters. This project comprises a control of partial differential equations (PDEs) analysis of the principal model associated to panel and flap flutter. Results derived from PDE analyses are valuable for a variety of reasons. They: (i) guide and streamline experimental and numerical flutter threshold determination, (ii) can improve cost-effectiveness of experimentation and cut-down on design time of prototypes, (iii) indicate what types and locations of damping will be effective for a given flow-plate configuration. The proposed investigations are based upon very recent progress in aeroelasticity that has permitted extensions of a classical flow-plate model used over the last 50 years. Obtaining results for flow-structure systems is demanding, as problems arise in the mismatching regularity of dynamics at the interface and ill defined or unbounded trace terms in the coupling. Recent advances in hyperbolic trace regularity theory, abstract coupled models, PDEs with delay, and geometrically constrained damping make modern PDE analysis of flow-plate models tractable. This proposal centers on well-posedness and stability in the presence of feedback controls for a class of nonlinear flow-plate models which include partially free plate boundary conditions and dynamic flow boundary conditions near plate edges. Fully nonlinear models accounting for both in-plane and out-of-plane motion in the structure, as well as nonlinear fluids, are considered. Moreover, recent stability analyses will be extended to the intermediary "transonic" flow regime and the piston-theoretic, hypersonic regime. Beyond well-posedness of these models, time convergence properties (i.e., attractors) of the dynamics will be considered to determine the sensitivity of non-transient behavior of the system to the plate's boundary conditions and external loading. The current proposal can be viewed as an analysis of models arising in aeroelasticity by providing a comparison between qualitative properties of well-posed PDEs to experimentally observed and/or numerically approximated behaviors.
气动弹性领域的基本问题之一是对气动弹性颤振不稳定性的预测和控制。当空气动力载荷激发结构的自然振荡模式时,浸入气流中的柔性结构会发生颤振;结果是结构的位移和气流场的扰动之间可能存在剧烈的相互作用。 这种现象可能发生在多种应用中,包括:强风中的建筑物和桥梁、旗状结构、人体呼吸系统以及空中和陆地车辆上的面板和襟翼结构。 在飞机方面,颤振是一个关键问题。如果颤振引起的结构位移足够大,则可能会发生结构破坏。长时间持续的小振动也可能给结构带来代价高昂和/或危险的疲劳。 最近,有人提出利用颤振(自然发生的或诱导的)的想法通过压电“收获”提供替代能源。由于这些原因,人们对建立描述颤振现象的数学模型非常感兴趣,以便深入了解流-结构耦合的机制并根据系统的物理参数预测系统的动力学。 该项目包括对与面板和襟翼颤振相关的主模型的偏微分方程(PDE)分析的控制。 出于多种原因,偏微分方程分析得出的结果很有价值。它们:(i)指导和简化实验和数值颤振阈值的确定,(ii)可以提高实验的成本效益并缩短原型的设计时间,(iii)指示哪些类型和位置的阻尼对于给定的流板配置有效。 拟议的研究基于气动弹性学的最新进展,该进展允许扩展过去 50 年使用的经典流板模型。获得流结构系统的结果要求很高,因为界面处动力学的不匹配规律性以及耦合中不明确或无界的迹项会出现问题。双曲迹规律性理论、抽象耦合模型、延迟偏微分方程和几何约束阻尼的最新进展使得流板模型的现代偏微分方程分析变得易于处理。该提案的重点是一类非线性流板模型存在反馈控制时的适定性和稳定性,其中包括部分自由板边界条件和板边缘附近的动态流边界条件。考虑了结构中平面内和平面外运动以及非线性流体的完全非线性模型。此外,最近的稳定性分析将扩展到中间“跨音速”流态和活塞理论、高超音速流态。除了这些模型的适定性之外,还将考虑动力学的时间收敛特性(即吸引子)来确定系统非瞬态行为对板边界条件和外部载荷的敏感性。当前的提议可以被视为对气动弹性模型的分析,通过提供适定偏微分方程的定性特性与实验观察和/或数值近似行为之间的比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Webster其他文献
HyperStak: A PEZ Style Dispenser for Microplates
- DOI:
10.1016/j.jala.2005.07.001 - 发表时间:
2005-10-01 - 期刊:
- 影响因子:
- 作者:
Daniel P. Cinicola;Justin Webster;Paul Skerker - 通讯作者:
Paul Skerker
Justin Webster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Webster', 18)}}的其他基金
Self-excitation, Limit Cycle Oscillations, and Control of Large Deflection Plate Models in Engineering Applications
工程应用中大偏转板模型的自激、极限循环振荡和控制
- 批准号:
2307538 - 财政年份:2023
- 资助金额:
$ 11.03万 - 项目类别:
Standard Grant
Collaborative Research: Experiment, Theory, and Simulation of Aeroelastic Limit Cycle Oscillations for Energy Harvesting Applications
合作研究:能量收集应用的气动弹性极限循环振荡的实验、理论和模拟
- 批准号:
1907620 - 财政年份:2019
- 资助金额:
$ 11.03万 - 项目类别:
Standard Grant
Analysis and Control of Mathematical Models of Fluttering Plates
颤振板数学模型分析与控制
- 批准号:
1504697 - 财政年份:2014
- 资助金额:
$ 11.03万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Pharmacometrics Modelling-Based Dose-Finding and Synthetic Control Arms Established Using Longitudinal Analyses - Numerical analysis - Mathematical sc
使用纵向分析建立基于药理学模型的剂量寻找和合成控制臂 - 数值分析 - 数学 sc
- 批准号:
2444835 - 财政年份:2020
- 资助金额:
$ 11.03万 - 项目类别:
Studentship
Optimal control problems in mathematical biology: Modelling, analysis and numerics
数学生物学中的最优控制问题:建模、分析和数值
- 批准号:
2435611 - 财政年份:2020
- 资助金额:
$ 11.03万 - 项目类别:
Studentship
Mathematical Control Theory and Analysis of Partial Differential Equations Coupled Across a Boundary Interface
边界界面耦合偏微分方程的数学控制理论与分析
- 批准号:
1907823 - 财政年份:2019
- 资助金额:
$ 11.03万 - 项目类别:
Standard Grant
Mathematical analysis of on-demand digital control model for type 2 Diabetes Mellitus
2型糖尿病按需数字控制模型的数学分析
- 批准号:
19K12198 - 财政年份:2019
- 资助金额:
$ 11.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of elastic wave control in phononic structures and acoustic metamaterials
声子结构和声学超材料中弹性波控制的数学分析
- 批准号:
18F18043 - 财政年份:2018
- 资助金额:
$ 11.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical modelling and spatial data analysis to inform TB care and control strategies in high TB incidence settings
数学建模和空间数据分析可为结核病高发地区的结核病护理和控制策略提供信息
- 批准号:
MR/N014693/1 - 财政年份:2016
- 资助金额:
$ 11.03万 - 项目类别:
Fellowship
Towards Math-Agro Science -Mathematical Analysis and Control on Alternate Bearing and Synchronization-
迈向数学-农业科学-交替轴承与同步的数学分析与控制-
- 批准号:
15KT0112 - 财政年份:2015
- 资助金额:
$ 11.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and Control of Mathematical Models of Fluttering Plates
颤振板数学模型分析与控制
- 批准号:
1504697 - 财政年份:2014
- 资助金额:
$ 11.03万 - 项目类别:
Continuing Grant
Mathematical Analysis on Locomotion Pattern and Friction Control in Gastropod's Crawling Locomotion
腹足动物爬行运动模式及摩擦控制的数学分析
- 批准号:
26887038 - 财政年份:2014
- 资助金额:
$ 11.03万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
DNA-methylation pattern formation: mechanistic analysis and mathematical modeling of epigenetic control (C02)
DNA甲基化模式形成:表观遗传控制的机制分析和数学建模(C02)
- 批准号:
228323697 - 财政年份:2013
- 资助金额:
$ 11.03万 - 项目类别:
Collaborative Research Centres














{{item.name}}会员




