Novel mechanisms of plant mitochondrial DNA repair
植物线粒体DNA修复的新机制
基本信息
- 批准号:1413152
- 负责人:
- 金额:$ 57.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to provide fundamental knowledge of the energy conversion centers of plants that will allow scientists to engineer more energy efficient agricultural crops. The energy conversion centers or "powerhouses" of plant cells are called mitochondria, which are small membrane-bound compartments where the energy from carbon compounds is converted into a form that plant cells can use. Mitochondria have their own DNA, which is easily damaged and must be repaired to maintain efficient energy output. This project seeks to define the mechanism by which important gene sequences in mitochondrial DNA are repaired so that the efficient output of energy is maintained for plant growth. This project also seeks to provide training opportunities for graduate, undergraduate and high-school students, and to increase the diversity of students who are receiving research training.Plant mitochondrial genomes are notorious for their large and variable size, high rearrangement rates and low mutation rates. How coding sequences are highly conserved while the rest of the genome expands and rearranges is a mystery. Recent work suggests a model that the expansions and rearrangements are produced by error-prone repair mechanisms while genes are repaired very accurately. Plant mitochondrial genome rearrangements and repair errors lead to life-history trait changes such as male sterility, and our understanding of basic mechanisms of repair is currently inadequate for modeling and prediction of these processes and their outcomes. The central hypothesis of this project is that much of the DNA damage in mitochondria is processed through the various subtypes of double-strand break repair, leading to accurate repair of genes by gene conversion and repair of non-genes by inaccurate mechanisms including break-induced replication and non-homologous end-joining. This hypothesis will be tested by altering the repair pathways such that mismatches or double-strand breaks are created at known positions within the Arabidopsis thaliana mitochondrial genome, both in coding and noncoding DNA, and assessing which repair pathways have been used. This will lead to better understanding of the mechanisms and pathways of DNA repair and recombination in plant mitochondria. This work will also advance our knowledge of the mechanisms and theoretical underpinnings of evolutionary change in the mitochondrial genome. In addition, this project will provide training opportunities for graduate, undergraduate and high-school students from diverse backgrounds.
该项目的目标是提供有关植物能量转换中心的基础知识,使科学家能够设计出更节能的农业作物。植物细胞的能量转换中心或“发电站”被称为线粒体,这是一种结合在膜上的小隔间,碳化合物的能量在这里被转化为植物细胞可以使用的形式。线粒体有自己的DNA,很容易损坏,必须修复才能保持有效的能量输出。这个项目试图确定修复线粒体DNA中重要基因序列的机制,以保持植物生长所需的有效能量输出。该项目还寻求为研究生、本科生和高中生提供培训机会,并增加接受研究培训的学生的多样性。植物线粒体基因组以其大而可变的大小、高重组率和低突变率而臭名昭著。编码序列是如何高度保守的,而基因组的其余部分却在扩张和重排,这是一个谜。最近的工作提出了一个模型,即基因的扩张和重排是由容易出错的修复机制产生的,而基因被非常准确地修复。植物线粒体基因组重排和修复错误会导致雄性不育等生活史性状的变化,目前我们对修复的基本机制的了解不足以对这些过程及其结果进行建模和预测。该项目的中心假设是,线粒体中的大部分DNA损伤是通过不同亚型的双链断裂修复来处理的,通过基因转换导致基因的准确修复,以及通过不准确的机制修复非基因,包括断裂诱导的复制和非同源末端连接。这一假说将通过改变修复途径来检验,从而在拟南芥线粒体基因组中的已知位置产生错配或双链断裂,无论是编码还是非编码DNA,并评估使用了哪些修复途径。这将有助于更好地了解植物线粒体DNA修复和重组的机制和途径。这项工作还将促进我们对线粒体基因组进化变化的机制和理论基础的了解。此外,该项目还将为不同背景的研究生、本科生和高中生提供培训机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Christensen其他文献
Alan Christensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Christensen', 18)}}的其他基金
Double-strand break repair in plant mitochondria: products and proteins
植物线粒体双链断裂修复:产物和蛋白质
- 批准号:
1933590 - 财政年份:2019
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
EAGER: Plant Mitochondrial Transformation
EAGER:植物线粒体转化
- 批准号:
1104677 - 财政年份:2011
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
Molecular Genetics of the Drosophila Triplo-lethal Locus
果蝇三倍致死基因座的分子遗传学
- 批准号:
9808209 - 财政年份:1998
- 资助金额:
$ 57.38万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Molucular mechanisms of the induction and suppression of novel NLR-type plant resistance by bromovirus infection
溴病毒感染诱导和抑制新型 NLR 型植物抗性的分子机制
- 批准号:
22H02346 - 财政年份:2022
- 资助金额:
$ 57.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identifying ADRD intervention targets by characterizing neurobiological mechanisms of social isolation, loneliness, and social environment using novel imaging, molecular markers, and machine learning
使用新颖的成像、分子标记和机器学习来表征社会孤立、孤独和社会环境的神经生物学机制,从而确定 ADRD 干预目标
- 批准号:
10525514 - 财政年份:2022
- 资助金额:
$ 57.38万 - 项目类别:
Discovering novel components and mechanisms of plant oxygen-sensing
发现植物氧传感的新成分和机制
- 批准号:
BB/W013967/1 - 财政年份:2022
- 资助金额:
$ 57.38万 - 项目类别:
Research Grant
Understanding and Enhancing PFAS Phytoremediation Mechanisms Using Novel Nanomaterials
使用新型纳米材料了解和增强 PFAS 植物修复机制
- 批准号:
10157379 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Novel Molecular Mechanisms Promote GPCR-Induced Bronchodilation in Asthma
新型分子机制促进 GPCR 诱导的哮喘支气管扩张
- 批准号:
10478318 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Understanding and Enhancing PFAS Phytoremediation Mechanisms Using Novel Nanomaterials
使用新型纳米材料了解和增强 PFAS 植物修复机制
- 批准号:
10556370 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Understanding and Enhancing PFAS Phytoremediation Mechanisms Using Novel Nanomaterials
使用新型纳米材料了解和增强 PFAS 植物修复机制
- 批准号:
10388186 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Novel Molecular Mechanisms Promote GPCR-Induced Bronchodilation in Asthma
新型分子机制促进 GPCR 诱导的哮喘支气管扩张
- 批准号:
10271810 - 财政年份:2021
- 资助金额:
$ 57.38万 - 项目类别:
Discovering novel plant defense proteins and elucidating their mechanisms of action in plants with laticifers as a beginning.
以乳管为起点,发现新型植物防御蛋白并阐明其在植物中的作用机制。
- 批准号:
20K05768 - 财政年份:2020
- 资助金额:
$ 57.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel mechanism controlling calcium signaling to treat and prevent neurodegeneration in early stage glaucoma
控制钙信号传导以治疗和预防早期青光眼神经变性的新机制
- 批准号:
9916194 - 财政年份:2020
- 资助金额:
$ 57.38万 - 项目类别: