Discovering novel components and mechanisms of plant oxygen-sensing

发现植物氧传感的新成分和机制

基本信息

  • 批准号:
    BB/W013967/1
  • 负责人:
  • 金额:
    $ 63.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

This application describes work that will transform our understanding of the biochemistry of plant oxygen-sensing. Oxygen is a key molecule for aerobic organisms, and oxygen-sensing is a central component of multicellular eukaryote biology. Reduced oxygen levels (hypoxia) due to flooding or waterlogging greatly reduce crop yields, and these important abiotic stresses are increasing in frequency and intensity due to climate change. Recently, in our lab and others, many novel roles for oxygen sensing have been defined in plants. Defining the complete biochemical mechanism of plant oxygen-sensing is an essential prerequisite to providing breeding or biotechnological approaches to stabilise yield in response to flooding and waterlogging. Along with others, we discovered a mechanism of plant oxygen sensing a decade ago, showing that oxygen-required degradation of key regulatory transcription factors controlled plant responses to hypoxia (Gibbs et al Nature 2011). We then showed that genetically enhancing oxygen-sensing in barley increased tolerance to waterlogging (Mendiondo et al Plant Biotechnology Journal 2016), demonstrating that our fundamental biochemical genetic approaches could be translated to address this agricultural problem. The pathway of oxygen-sensing, the PCO N-degron pathway, shares similarity to that of the animal Hypoxia Inducible Factor (HIF) system (that won the 2019 Nobel prize for Medicine and Physiology), including proteasomal destruction of transcription factors following covalent attachment of oxygen via dioxygenase enzymes, though the mechanisms are not related. Unlike the animal HIF system several core mechanisms and components of the plant oxygen-sensing pathway are not resolved. As animals also have an equivalent of the PCO (in animals ADO) N-degron pathway, these aspects are also unresolved in animal biology. This proposal seeks to fill these important knowledge gaps by addressing major inconsistencies between the currently accepted model for plant oxygen sensing and experimental evidence. In the proposed work we will discover new components and mechanisms of the core plant oxygen-sensing system (this will also provide information for the equivalent components and mechanisms of the animal ADO N-degron pathway). By providing new information that will completely redefine the PCO N-degron pathway (that we also showed acts as a mechanism of plant nitric oxide sensing; Gibbs et al Molecular Cell 2014), the work will facilitate the creation of novel resources and approaches to address agronomic problems associated with multiple abiotic stress tolerance, including flooding/waterlogging and salinity/drought. The project will involve a combination of inter-disciplinary experimental approaches spanning synthetic peptide synthesis, Mass Spectrometry, enzymology, genetics and plant physiology, only possible through the proposed collaboration of biologists and chemists. The project therefore provides great potential for novel interdisciplinary training. The proposed work is timely, building on our preliminary data and very recent publications by the project team and others in related fields, and offers the opportunity to resolve all the components of the pathway and defining their functions in this mechanism so essential for plant growth, development and response to environmental stresses.
这个应用程序描述的工作,将改变我们的理解的生物化学的植物氧传感。氧是需氧生物的关键分子,氧传感是多细胞真核生物学的核心组成部分。由于洪水或水涝导致的氧气水平降低(缺氧)大大降低了作物产量,并且由于气候变化,这些重要的非生物胁迫的频率和强度正在增加。最近,在我们的实验室和其他实验室中,已经在植物中定义了许多氧传感的新角色。确定植物氧传感的完整生化机制是提供育种或生物技术方法以稳定产量以应对洪涝的必要前提。与其他人沿着,我们在十年前发现了植物氧感测的机制,表明关键调节转录因子的氧需要降解控制植物对缺氧的反应(Gibbs等Nature 2011)。然后,我们表明,遗传增强大麦中的氧感增加了对水涝的耐受性(Mendiondo et al Plant Biotechnology Journal 2016),这表明我们的基本生物化学遗传方法可以转化为解决这一农业问题。氧传感的途径,PCO N-degron途径,与动物缺氧诱导因子(HIF)系统(获得2019年诺贝尔医学和生理学奖)相似,包括通过双加氧酶共价连接氧后转录因子的蛋白酶体破坏,尽管机制无关。与动物HIF系统不同,植物氧传感通路的几个核心机制和组分尚未解决。由于动物也具有PCO(在动物中ADO)N-降解决定子途径的等价物,这些方面在动物生物学中也未解决。这项建议旨在填补这些重要的知识空白,解决目前公认的植物氧传感模型和实验证据之间的主要不一致。在拟议的工作中,我们将发现核心植物氧传感系统的新组件和机制(这也将为动物ADO N-degron途径的等效组件和机制提供信息)。通过提供新的信息,将完全重新定义PCO N-degron途径(我们也表明它是植物一氧化氮传感的机制; Gibbs et al Molecular Cell 2014),这项工作将促进创造新的资源和方法,以解决与多种非生物胁迫耐受性相关的农艺学问题,包括洪水/水涝和盐度/干旱。该项目将涉及跨学科实验方法的组合,涵盖合成肽合成,质谱,酶学,遗传学和植物生理学,只有通过生物学家和化学家的拟议合作才有可能。因此,该项目为新的跨学科培训提供了巨大的潜力。拟议的工作是及时的,建立在我们的初步数据和项目团队和其他相关领域的最新出版物的基础上,并提供了解决该途径的所有组成部分并定义其在该机制中的功能的机会,该机制对植物生长,发育和对环境压力的响应至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Holdsworth其他文献

Michael Holdsworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Holdsworth', 18)}}的其他基金

Defining a new realm of proteolysis activated protein function
定义蛋白水解激活蛋白功能的新领域
  • 批准号:
    BB/X014258/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
For whom the bell tolls: Linking protease degradomes with the proteasome through the N-end rule pathway to understand biological function.
丧钟为谁而鸣:通过 N 端规则途径将蛋白酶降解组与蛋白酶体连接起来,以了解生物学功能。
  • 批准号:
    BB/S005293/1
  • 财政年份:
    2019
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
Charting the protein modifications systems that underpin submergence tolerance in rice
绘制支撑水稻耐淹性的蛋白质修饰系统
  • 批准号:
    BB/R002428/1
  • 财政年份:
    2018
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
Does the N-end rule pathway of targeted proteolysis control the plant immune system?
靶向蛋白水解的N端规则途径是否控制植物免疫系统?
  • 批准号:
    BB/M029441/1
  • 财政年份:
    2016
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
The MC-Degradome; a gas-sensing proteome that controls plant development?
MC-降解组;
  • 批准号:
    BB/M007820/1
  • 财政年份:
    2015
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
13 ERA-CAPS The role of the N-end rule pathway in controlling plant response to the environment
13 ERA-CAPS N端规则途径在控制植物对环境反应中的作用
  • 批准号:
    BB/M002268/1
  • 财政年份:
    2014
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
Cellular morphodynamics and genome-wide networks driving plant cell shape change
细胞形态动力学和全基因组网络驱动植物细胞形状变化
  • 批准号:
    BB/J017604/1
  • 财政年份:
    2013
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
The N-end rule pathway controls plant response to drought
N端规则途径控制植物对干旱的反应
  • 批准号:
    BB/K000144/1
  • 财政年份:
    2012
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
The virtual seed (vSEED)
虚拟种子 (vSEED)
  • 批准号:
    BB/G02488X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant
How does targeted proteolysis regulate ABA signalling?
靶向蛋白水解如何调节 ABA 信号传导?
  • 批准号:
    BB/G010595/1
  • 财政年份:
    2009
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Research Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
  • 批准号:
    83007861
  • 财政年份:
    2024
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Innovation Loans
Identification and analysis of a novel pattern-recognition receptor that senses intracellular bacterial components
感知细胞内细菌成分的新型模式识别受体的鉴定和分析
  • 批准号:
    23H02715
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A co-infection model for papillomavirus associated infections and cancers
乳头瘤病毒相关感染和癌症的共感染模型
  • 批准号:
    10667710
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Origins and Benefits of Biologically Active Components in Human Milk
母乳中生物活性成分的来源和益处
  • 批准号:
    10683486
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Characterizing pervasive biases in genome-wide association study using family health history as proxy phenotypes
使用家族健康史作为代理表型来表征全基因组关联研究中普遍存在的偏差
  • 批准号:
    10799096
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Mechanisms of Klebsiella pneumoniae gastrointestinal colonization
肺炎克雷伯菌胃肠道定植机制
  • 批准号:
    10736879
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Nanobodies targeting stress granule components
针对应激颗粒成分的纳米抗体
  • 批准号:
    10739370
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Components of emergency department pediatric readiness associated with short- and long-term survival among children: a mixed methods evaluation
与儿童短期和长期生存相关的急诊儿科准备的组成部分:混合方法评估
  • 批准号:
    10731344
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Project 2: Microbial determinants of HIV broadly-neutralizing antibody precursor induction in infants
项目2:婴儿中HIV广泛中和抗体前体诱导的微生物决定因素
  • 批准号:
    10731282
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
Ultra-sensitive, unbiased, high-throughput, biochemical CHANGE-seq genome-wide activity and gRNA sequencing assays for therapeutic genome editing INDs
用于治疗性基因组编辑 IND 的超灵敏、无偏倚、高通量、生化 CHANGE-seq 全基因组活性和 gRNA 测序分析
  • 批准号:
    10668824
  • 财政年份:
    2023
  • 资助金额:
    $ 63.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了