EAPSI: Developing a new theory of discrete angle-preserving surface maps

EAPSI:开发离散保角表面图的新理论

基本信息

  • 批准号:
    1414940
  • 负责人:
  • 金额:
    $ 0.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The study of complex functions is central to modern mathematics, and may be roughly described as the study of angle-preserving maps between surfaces. A recent application of these maps is their use in the processing of data on two-dimensional surfaces in three dimensions, such as data from medical imaging or 3D facial scans. The maps provide a way to obtain standardized coordinates on such surfaces, to aid data comparison. This project will aim to develop a new finite approximation of these surface maps by proving the Riemann mapping theorem, a foundational theorem in the study of complex functions. This research will be conducted in collaboration with Drs. Jian Sun, David Gu, and Feng Luo, noted experts on computational and low-dimensional geometry and topology, at Tsinghua University in Beijing, China.Given a piecewise flat metric on a compact surface, we may construct it as a gluing of Euclidean triangles, resulting in a geometric triangulation with a finite number of cone points. This research considers a notion of discrete conformality for such metrics that allows for scaling of edge lengths by conformal factors at the cone points, up to Delaunay conditions; and edge flips to transition between Delaunay triangulations. In recent work, a uniformization result was proven, which demonstrated that any such metric is discrete conformal to a metric with equal angle defect (curvature) at each cone point. Furthermore, a discrete Ricci flow realizes this uniformization, and numerous computations of this flow suggest that the resulting piecewise linear maps converge to holomorphic maps as the triangulations become finer. For the case of the disc, attempts will be made to prove this convergence to obtain the classic Riemann mapping theorem. This NSF EAPSI award is funded in collaboration with Chinese Ministry of Science and Technology.
对复变函数的研究是现代数学的核心,可以粗略地描述为对曲面之间保角映射的研究。这些地图的最近应用是它们在三维中的二维表面上的数据处理中的使用,例如来自医学成像或3D面部扫描的数据。这些地图提供了一种方法来获得这些表面上的标准化坐标,以帮助数据比较。这个项目的目的是通过证明黎曼映射定理,一个基础定理,在研究复杂的功能,开发这些表面映射的一个新的有限近似。本研究将与清华大学著名的计算和低维几何与拓扑专家孙健、大卫和罗锋博士合作进行。给定紧致曲面上的分段平坦度量,我们可以将其构造为欧氏三角形的胶合,从而得到具有有限个锥点的几何三角剖分。本研究考虑了离散保形性的概念,这样的指标,允许缩放的边缘长度的锥点的保形因子,德劳内条件;和边缘翻转之间的过渡德劳内三角剖分。在最近的工作中,一个一致化结果被证明,这表明任何这样的度量是离散共形的度量与等角亏损(曲率)在每个锥点。此外,一个离散的里奇流实现了这种一致化,大量的计算表明,这种流的分段线性映射收敛到全纯映射的三角剖分变得更精细。对于圆盘的情形,将试图证明这种收敛性,以得到经典的黎曼映射定理。NSF EAPSI奖是与中国科技部合作资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Chien其他文献

Helix-Free Stripes for Knit Graph Design
用于针织图形设计的无螺旋条纹
813 Access to tdap vaccine in outpatient offices and immunization uptake during pregnancy
  • DOI:
    10.1016/j.ajog.2020.12.836
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rachelle Abdelnour;Cassandra Heiselman;Emily Freeman;Estee George;Susan Kovach;Edward Chien
  • 通讯作者:
    Edward Chien
651: Fetal growth trajectories and relationship to time to delivery: the NICHD fetal growth studies
  • DOI:
    10.1016/j.ajog.2016.11.385
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine Laughon Grantz;Angelo Elmi;John Owen;William A. Grobman;Roger B. Newman;Sarah J. Pugh;Edward Chien;Deborah A. Wing;Paul S. Albert
  • 通讯作者:
    Paul S. Albert
781 Multiethnic Growth Standards for Fetal Body Composition and Organ Volumes Derived from 3D Ultrasonography
  • DOI:
    10.1016/j.ajog.2023.11.806
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine Grantz;Wesley Lee;Lauren Mack;Magdalena Sanz Cortes;Luis Goncalves;Jimmy Espinoza;Roger Newman;William A. Grobman;Ronald J. Wapner;Karin Fuchs;Mary D'Alton;Daniel Skupski;John Owen;Anthony C. Sciscione;Deborah Wing;Michael P. Nageotte;Angela Ranzini;Edward Chien;Sabrina Craigo;Seth Sherman
  • 通讯作者:
    Seth Sherman
Gestational Diabetes and Longitudinal Ultrasonographic Measures of Fetal Growth in the NICHD Fetal Growth Studies-Singletons (P11-133-19)
  • DOI:
    10.1093/cdn/nzz048.p11-133-19
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mengying Li;Stefanie Hinkle;Sungduk Kim;Katherine Grantz;Jagteshwar Grewal;William Grobman;Daniel Skupski;Roger Newman;Edward Chien;Anthony Sciscione;Noelia Zork;Deborah Wing;Fasil Tekola-Ayele;Germaine Buck Louis;Paul Albert;Cuilin Zhang
  • 通讯作者:
    Cuilin Zhang

Edward Chien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Developing new tests and treatments to enable prevention of osteoarthritis.
开发新的测试和治疗方法以预防骨关节炎。
  • 批准号:
    MR/Y003470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Fellowship
Developing and Testing Innovations: Computer Science Through Engineering Design in New York
开发和测试创新:纽约的工程设计中的计算机科学
  • 批准号:
    2341962
  • 财政年份:
    2024
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Standard Grant
Developing a new method for the identification of cancer in archaeological populations
开发一种鉴定考古群体中癌症的新方法
  • 批准号:
    2341415
  • 财政年份:
    2024
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Standard Grant
EAGER: IMPRESS-U: Developing new approaches and structural materials to rebuild damaged Ukrainian infrastructure with environmental sustainability considerations
EAGER:IMPRESS-U:开发新方法和结构材料,在考虑环境可持续性的情况下重建受损的乌克兰基础设施
  • 批准号:
    2412196
  • 财政年份:
    2024
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Standard Grant
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Research Grant
Developing a new risk and needs assessment tool for young people who have displayed harmful sexual behaviour
为表现出有害性行为的年轻人开发新的风险和需求评估工具
  • 批准号:
    2886506
  • 财政年份:
    2023
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Studentship
Developing and exploring methods to understand human-nature interactions in urban areas using new forms of big data
利用新形式的大数据开发和探索理解城市地区人与自然相互作用的方法
  • 批准号:
    ES/W012979/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Research Grant
GOALI: Developing New Hydrogen Isotope Exchange Strategies for Isotope Labelling of Pharmaceuticals
目标:开发用于药物同位素标记的新​​氢同位素交换策略
  • 批准号:
    2247057
  • 财政年份:
    2023
  • 资助金额:
    $ 0.53万
  • 项目类别:
    Standard Grant
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
  • 批准号:
    10735695
  • 财政年份:
    2023
  • 资助金额:
    $ 0.53万
  • 项目类别:
Developing and evaluating new measures of family availability to provide care to people with dementia
制定和评估家庭可用性的新衡量标准,为痴呆症患者提供护理
  • 批准号:
    10728725
  • 财政年份:
    2023
  • 资助金额:
    $ 0.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了