Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI

使用生成人工智能开发新一代工具来预测新型 AMR 突变谱

基本信息

项目摘要

Drugs against infectious diseases have transformed human and animal health and saved millions of lives. Nevertheless, their widespread use and misuse has led to the emergence of antimicrobial resistance (AMR) that poses a potentially catastrophic threat to public health and animal husbandry.There a several routes by which a pathogen can become resistant to a drug. One of the principal routes, and a focus of this project, is by single point mutations in genomic regions that code for proteins and result in a change in the protein's sequence of amino acids. These types of mutations are called Single Nucleotide Polymorphisms (SNPs). Advances in genome sequencing means there are now large collections of sequences from a range of pathogens where SNPs have been identified and can be associated with drug resistance. This project aims to capitalise on this wealth of data, combined with the recent advances made to accurately model protein structures, to develop a new AI-based tool to predict the effect of SNPs that could lead to resistance and have yet to be observed.By modelling how pathogens mutate to avoid the effect of drugs, we can better predict how infections will respond to specific drugs and may be able to design drugs that have longer clinical use. As well as directly benefiting those working to develop the next generation of drugs, it also benefits those managing prescribing routines and in surveillance, identifying new emerging resistance that can be acted on before it becomes widespread within a population.The project brings together a group of international experts from the University of Queensland (Australia) and the London School of Hygiene & Tropical Medicine (LSHTM, UK) who have complementary expertise in AI, drug resistance and bacterial pathogen genomics. The project has several key objectives:Objective 1: Develop a Natural Language Processing (NLP)-based AI tool for predicting SNPs causing resistance trained on features derived from the large collections of pathogen genome data where mutations associated with drug resistance have been identified.Objective 2: Validate and apply the newly developed methodologies to specific pathogens including Salmonella Typhiand Klebsiella pneumoniae (WHO priority pathogens) that gives opportunity for real-world validation and the ability to give insights into resistance mechanisms.Objective 3: Knowledge Exchange of AI applied to AMR though two UK-led workshops. This will enhance the collaborative network, establish design criteria for the AI tool based on user needs, and provide a pathway to translating the tools into real-world use. In addition, exchanges of researchers between the UK and Australian groups will enhance capacity and capabilities of both teams.This project envisions an AI-powered solution to help pre-empt the impact of drug resistance mutations, addressing the urgent need to combat the growing threat of AMR. The validated new computational tools will help in developing better drugs and, in conjunction with complementary technologies, aid in deciding drug treatment regimens and in resistance surveillance. It will enable a UK-led international partnership that will place the groups involved at the forefront of research in this field.
治疗传染病的药物改变了人类和动物的健康,挽救了数百万人的生命。然而,它们的广泛使用和滥用导致了抗菌素耐药性(AMR)的出现,对公共卫生和畜牧业构成了潜在的灾难性威胁。病原体可以通过几种途径对药物产生耐药性。主要途径之一,也是该项目的重点,是通过编码蛋白质的基因组区域中的单点突变,并导致蛋白质氨基酸序列的变化。这些类型的突变被称为单核苷酸多态性(SNP)。基因组测序的进步意味着现在有大量来自一系列病原体的序列,其中SNP已经被鉴定出来,并且可能与耐药性有关。该项目旨在利用这些丰富的数据,结合最近在精确建模蛋白质结构方面取得的进展,开发一种新的基于人工智能的工具,以预测可能导致耐药性且尚未观察到的SNP的影响。通过模拟病原体如何突变以避免药物的影响,我们可以更好地预测感染将如何对特定药物做出反应,并且可能能够设计出具有更长临床使用时间的药物。该项目不仅使那些致力于开发下一代药物的人直接受益,也使那些管理处方常规和监测工作的人受益,这些工作是在新出现的耐药性在人群中广泛传播之前发现可以采取行动的耐药性。该项目汇集了来自昆士兰州大学的一组国际专家(澳大利亚)和伦敦卫生与热带医学学院(LSHTM,英国),他们在人工智能,耐药性和细菌病原体基因组学方面具有互补的专业知识。该项目有几个关键目标:目标1:开发一个基于自然语言处理(NLP)的人工智能工具,用于预测导致耐药性的SNP,该工具基于来自大量病原体基因组数据的特征进行训练,其中已确定与耐药性相关的突变。将新开发的方法学应用于包括伤寒沙门氏菌和肺炎克雷伯氏菌在内的特定病原体(世卫组织优先病原体),为现实世界的验证提供机会,并能够深入了解耐药机制。目标3:通过两个英国主导的研讨会,交流AI应用于AMR的知识。这将增强协作网络,根据用户需求建立人工智能工具的设计标准,并提供将工具转化为现实世界使用的途径。此外,英国和澳大利亚研究小组之间的研究人员交流将提高双方团队的能力和能力。该项目设想了一种人工智能驱动的解决方案,以帮助先发制人的耐药性突变的影响,解决迫切需要打击日益增长的AMR威胁。经过验证的新计算工具将有助于开发更好的药物,并与补充技术相结合,帮助决定药物治疗方案和耐药性监测。它将使英国领导的国际伙伴关系,将参与该领域研究的最前沿的团体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Furnham其他文献

WHAT CAN COMPARATIVE GENOMICS REVEAL ABOUT THE MECHANISMS OF PROTEIN FUNCTION EVOLUTION
比较基因组学可以揭示蛋白质功能进化机制的哪些内容
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Dawson;R. A. Studer;Nicholas Furnham;D. Lees;Sayoni Das;J. Thornton;C. Orengo
  • 通讯作者:
    C. Orengo
THE RAMACHANDRAN PLOT AND PROTEIN STRUCTURE VALIDATION
RAMACHANDRAN 图和蛋白质结构验证
  • DOI:
    10.1142/9789814449144_0005
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Laskowski;Nicholas Furnham;J. Thornton
  • 通讯作者:
    J. Thornton
FunTree: advances in a resource for exploring and contextualising protein function evolution
FunTree:探索和背景化蛋白质功能进化的资源进展
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Sillitoe;Nicholas Furnham
  • 通讯作者:
    Nicholas Furnham
Multiprotein Systems As Targets for Drug Discovery : Opportunities and Challenges
多蛋白系统作为药物发现的目标:机遇与挑战
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Blundell;O. Davies;D. Chirgadze;Nicholas Furnham;L. Pellegrini;B. L. Sibanda
  • 通讯作者:
    B. L. Sibanda
The NAD Binding Domain and the Short‐Chain Dehydrogenase/Reductase (SDR) Superfamily
NAD 结合域和短链脱氢酶/还原酶 (SDR) 超家族
  • DOI:
    10.1002/9781118743089.ch8
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Furnham;Gemma L. Holliday;J. Thornton
  • 通讯作者:
    J. Thornton

Nicholas Furnham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Furnham', 18)}}的其他基金

Improving The Longevity Of New Infectious Disease Therapeutics Using Machine Learning / Artificial Intelligence In Early Stage Drug Discovery
在早期药物发现中使用机器学习/人工智能来延长新传染病疗法的寿命
  • 批准号:
    MR/T000171/1
  • 财政年份:
    2019
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Research Grant
New001 Building research capacity for schistosomiasis drug discovery & development through high-content imaging & structural molecular biology studies
New001 建设血吸虫病药物发现的研究能力
  • 批准号:
    MR/M026221/1
  • 财政年份:
    2015
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Research Grant
Developing Computational Methods to Aid Infectious Disease Therapeutics Through Analysis of Protein Function Evolution
通过分析蛋白质功能进化开发计算方法来辅助传染病治疗
  • 批准号:
    MR/K020420/1
  • 财政年份:
    2013
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Fellowship

相似国自然基金

脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
  • 批准号:
    82371478
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
tau轻子衰变与新物理模型唯象研究
  • 批准号:
    11005033
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
  • 批准号:
    81072676
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
强子对撞机上新物理信号的多轻子末态研究
  • 批准号:
    10675110
  • 批准年份:
    2006
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a new generation of collaborative scientists and citizens through popular media
通过大众媒体培养新一代合作科学家和公民
  • 批准号:
    2314107
  • 财政年份:
    2023
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Continuing Grant
Next generation cell imaging: developing new genetically encodable super-scattering Raman probes
下一代细胞成像:开发新型基因可编码超散射拉曼探针
  • 批准号:
    2887769
  • 财政年份:
    2023
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Studentship
Zeal-Lifestyle, a start-up focussed on developing a new generation of desirable and sustainable mobility products, removing the stigma of assistive living products.
Zeal-Lifestyle 是一家初创公司,专注于开发新一代理想且可持续的移动产品,消除辅助生活产品的耻辱。
  • 批准号:
    10044630
  • 财政年份:
    2022
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Grant for R&D
Developing industrial symbiosis using UK waste clay resources for new generation building materials
利用英国废粘土资源开发新一代建筑材料的工业共生
  • 批准号:
    10001906
  • 财政年份:
    2022
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Collaborative R&D
Developing Durable, Env-Boosted CAR T Cells for HIV Cure
开发持久的、环境增强的 CAR T 细胞用于治疗 HIV
  • 批准号:
    10625234
  • 财政年份:
    2022
  • 资助金额:
    $ 31.94万
  • 项目类别:
Developing A New Generation Agent-based Travel Activity Model Incorporating In-Home and Out-of-Home Activities
开发结合室内和室外活动的新一代基于代理的旅行活动模型
  • 批准号:
    569634-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Developing new predictive models to automate the generation of personalised actions to improve home efficiencies
开发新的预测模型以自动生成个性化操作,从而提高家庭效率
  • 批准号:
    10043143
  • 财政年份:
    2022
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Grant for R&D
Developing Next Generation Genetics for Understanding Hematopoietic Stem Cell Biology
开发下一代遗传学以了解造血干细胞生物学
  • 批准号:
    10710163
  • 财政年份:
    2022
  • 资助金额:
    $ 31.94万
  • 项目类别:
NSFGEO-NERC: Developing A New Lower Cretaceous Time Scale: Foundation For The Next Generation Of Paleoceanographic And Biogeochemical Studies
NSFGEO-NERC:制定新的下白垩纪时间尺度:下一代古海洋学和生物地球化学研究的基础
  • 批准号:
    NE/V019406/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.94万
  • 项目类别:
    Research Grant
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
  • 批准号:
    10004966
  • 财政年份:
    2020
  • 资助金额:
    $ 31.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了