Multi-Worm Algorithm for Path Integral Quantum Monte Carlo in Ultracold Dipolar Gases

超冷偶极气体中路径积分量子蒙特卡罗的多蠕虫算法

基本信息

项目摘要

The goal of this project is to investigate quantum phases of strongly correlated systems with an emphasis on cold polar molecule setups. Strong correlations are at the core of many fascinating biological, chemical, and physical systems. The understanding of these systems is one of the major challenges facing physicists and a key issue in the community. Indeed, strongly correlated systems hold great potential in revolutionizing technological applications in medicine, communications, and computations. Within the framework of this project, novel extensions of a path-integral quantum Monte Carlo algorithm will be developed. The use of these Monte Carlo techniques will produce reliable and accurate results with controlled uncertainty. Unbiased theoretical predictions are timely and crucial to guide experimentalists in helping interpret experimental results and/or suggest observables. Moreover, the numerical results that will be obtained in this project can provide a platform for testing and validating analytical techniques. Indeed, these numerical techniques will also greatly contribute to the deeper understanding of certain classes of quantum many-body models which are, or will soon be, realizable in Atomic Molecular and Optical (AMO) experiments. In this project, the investigator and her students will develop extensions of quantum Monte Carlo techniques needed to study strongly-correlated many-body systems with an emphasis on cold polar molecules in optical lattice setups. When free of the sign problem, quantum Monte Carlo is a powerful theoretical tool to study equilibrium properties of strongly interacting systems, especially in dimensions higher than one. In this project the investigator will use the Worm algorithm to study properties of many-body strongly correlated systems of bosonic polar molecules trapped in optical lattice geometries. Emphasis will be given on geometries for which the anisotropic nature of the dipolar interaction will play a major role in determining the phase diagram of the system. The geometries that will be studied include stacks of one- and two-dimensional layers, and two-dimensional gases where molecules have tilted dipole moments. Considering the recent successful experimental advances in cold polar molecule experiments, these phases are very likely to be within reach in the near future. Therefore, accurate and reliable theoretical predictions are timely and valuable to the experimental community. The single-worm algorithm is not suitable to study the quantum phases of these multimers. In this project, the investigator plans to develop three different non-trivial extensions of the single-worm algorithm: (i) N-distinguishable-worms, (ii) N-indistinguishable-worms, and (iii) a hybrid algorithm with both distinguishable and indistinguishable worms. These multi-worm algorithms for quantum systems will allow for the study of multimer formation in a rich variety of optical lattice dipolar systems.
这个项目的目标是研究强关联系统的量子相,重点是冷极性分子的设置。强关联是许多令人着迷的生物、化学和物理系统的核心。对这些系统的理解是物理学家面临的主要挑战之一,也是社会上的一个关键问题。事实上,强关联系统在给医学、通信和计算领域的技术应用带来革命性变化方面有着巨大的潜力。在这个项目的框架内,将开发一种路径积分量子蒙特卡罗算法的新扩展。这些蒙特卡罗技术的使用将产生可靠和准确的结果,并控制不确定度。不偏不倚的理论预测对于指导实验者帮助解释实验结果和/或提出可观察性是及时和关键的。此外,本项目将获得的数值结果可以为测试和验证分析技术提供一个平台。事实上,这些数值技术也将极大地有助于更深入地理解某些类型的量子多体模型,这些模型正在或即将在原子、分子和光学(AMO)实验中实现。在这个项目中,研究人员和她的学生将开发研究强关联多体系统所需的量子蒙特卡罗技术的扩展,重点是光学晶格中的冷极性分子。在没有符号问题的情况下,量子蒙特卡罗是研究强相互作用系统平衡性质的有力理论工具,特别是在一维以上的情况下。在这个项目中,研究人员将使用Worm算法来研究捕获在光学晶格几何中的玻色子极性分子的多体强关联系统的性质。重点将放在偶极相互作用的各向异性性质将在确定系统相图中起主要作用的几何结构上。将要研究的几何结构包括一维层和二维层的堆叠,以及分子具有倾斜偶极矩的二维气体。考虑到最近在冷极性分子实验方面取得的成功实验进展,这些阶段很有可能在不久的将来触手可及。因此,准确可靠的理论预测对实验界来说是及时和有价值的。单WORM算法不适合研究这些多聚体的量子位相。在这个项目中,研究人员计划开发单蠕虫算法的三个不同的非平凡扩展:(I)N-可区分蠕虫,(Ii)N-不可区分蠕虫,以及(Iii)包含可区分蠕虫和不可区分蠕虫的混合算法。这些用于量子系统的多蠕虫算法将允许在丰富的光学晶格偶极系统中研究多聚体的形成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Capogrosso-Sansone其他文献

The $${{\bf{Z}}}_{{\bf{2}}}$$ toric-code and the double-semion topological order of hardcore Bose-Hubbard-type models in the strong-interaction limit
二维晶格规范理论中的 Z₂ 环面码以及强相互作用极限下硬核玻色 - 哈伯德型模型的双半子拓扑序
  • DOI:
    10.1038/s41598-017-11299-6
  • 发表时间:
    2017-09-11
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Wei Wang;Barbara Capogrosso-Sansone
  • 通讯作者:
    Barbara Capogrosso-Sansone

Barbara Capogrosso-Sansone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Capogrosso-Sansone', 18)}}的其他基金

Multi-Worm Algorithm for Path Integral Quantum Monte Carlo in Ultracold Dipolar Gases
超冷偶极气体中路径积分量子蒙特卡罗的多蠕虫算法
  • 批准号:
    1552978
  • 财政年份:
    2015
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032077
  • 财政年份:
    2020
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032136
  • 财政年份:
    2020
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720251
  • 财政年份:
    2017
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720465
  • 财政年份:
    2017
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Multi-Worm Algorithm for Path Integral Quantum Monte Carlo in Ultracold Dipolar Gases
超冷偶极气体中路径积分量子蒙特卡罗的多蠕虫算法
  • 批准号:
    1552978
  • 财政年份:
    2015
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1314469
  • 财政年份:
    2013
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1314735
  • 财政年份:
    2013
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1005543
  • 财政年份:
    2010
  • 资助金额:
    $ 29.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了