Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems

合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗

基本信息

  • 批准号:
    2032136
  • 负责人:
  • 金额:
    $ 20.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical and computational research with an aim to advance fundamental understanding of materials in which electrons interact strongly with each other. These materials exhibit unusual properties and phenomena which may lead to future device technologies. The PIs will use advanced computational approaches they have developed to perform computer simulations of electrons in this class of materials, and to explore the properties of a conceptually related system of strongly interacting particles - helium atoms at very low temperatures and modest pressure. The team will use simplified models to investigate how superconductivity can occur in materials with strongly interacting electrons. Superconductivity is a quantum state of matter where the electrons act in concert. A consequence is that electrons in a superconducting state can flow without resistance, unlike those in copper and the metals from which heating elements are made. The team will also investigate novel states of electrons that emerge due to their interaction with the vibrations of the crystalline lattice. The team will further pursue the consequences of interactions of strongly interacting electrons with crystalline lattice vibrations and investigate novel states that emerge when crystals are illuminated by light. Another focus of the project is helium, the second lightest element, which is in gas phase at room temperature. At extremely low temperatures helium becomes a liquid that can be thought of as a strongly interacting system of electrons, but without charge. At pressures above 25 times the atmospheric pressure, it becomes a crystalline solid and, like the liquid, displays intriguing properties consistent with the principles of quantum mechanics applied to systems of many interacting particles. At sufficiently low temperatures, liquid helium enters a state, called superfluidity, which is the analog of superconductivity. The team will explore striking properties of imperfect crystals of helium that arise as a consequence of quantum mechanics and the light mass of helium atoms. These include the frictionless transport of helium atoms through the solid and puzzling plastic phenomena observed in experiments for which no satisfactory theoretical explanations currently exist. The research team is well positioned to advance knowledge in these challenging problems of fundamental and technological interest, in part because the computational tools they have developed are well suited for the investigation of systems with strongly interacting particles, such as electrons in some classes of materials and helium atoms at extremely cold temperatures and modest pressures.This project also supports training graduate student and post-doctoral researchers in advanced numerical techniques, quantum statistics, topical problems of condensed-matter and atomic physics, and high-performance computing. This project also helps to advance the Precision Many Body Physics Initiative which is aimed to facilitate international collaboration in cutting edge research directed toward understanding collective properties of matter, including quantum matter. Activities planned within this context include: two major international workshops, Focused Sessions at American Physical Society March Meetings, and topical mini workshops at UMass Amherst.TECHNICAL SUMMARYThis award supports theoretical and computational research aimed at achieving a fundamental understanding of electronic and transport properties of a variety of condensed matter systems through the use of two state-of-the-art first-principles approaches to correlated quantum many-body systems: Worm Algorithm (WA) and Diagrammatic Monte Carlo (DiagMC); both introduced by the research team. The main goals of the project are: (i) DiagMC studies of Cooper instability in prototypical models of correlated electrons: systems with Coulomb and electron-phonon interactions and the repulsive Fermi-Hubbard model. (ii) DiagMC study of novel polaron states. (iii) WA-based study of disorder-induced quantum physics in solid He-4. (iv) WA-based study of novel exciton-photonic cooperative phases.This project also supports training graduate student and post-doctoral researchers in advanced numerical techniques, quantum statistics, topical problems of condensed-matter and atomic physics, and high-performance computing. This project also helps to advance the Precision Many Body Physics Initiative which is aimed to facilitate international collaboration in cutting edge research directed toward understanding collective properties of matter, including quantum matter. Activities planned within this context include: two major international workshops, Focused Sessions at American Physical Society March Meetings, and topical mini workshops at UMass Amherst.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持理论和计算研究,旨在促进对电子相互作用强烈的材料的基本理解。这些材料表现出不寻常的特性和现象,可能会导致未来的设备技术。PI将使用他们开发的先进计算方法来对这类材料中的电子进行计算机模拟,并探索概念上相关的强相互作用粒子系统的性质-氦原子在非常低的温度和适度的压力下。该团队将使用简化模型来研究超导性如何在具有强烈相互作用电子的材料中发生。超导是一种物质的量子状态,其中电子协同作用。其结果是,电子在超导状态下可以无阻力地流动,这与铜和制造加热元件的金属不同。该团队还将研究由于与晶格振动相互作用而出现的电子的新状态。该团队将进一步追求强烈相互作用的电子与晶格振动相互作用的结果,并研究当晶体被光照射时出现的新状态。该项目的另一个重点是氦,第二轻的元素,在室温下呈气相。在极低的温度下,氦变成一种液体,可以被认为是一种强烈相互作用的电子系统,但不带电荷。当压力超过大气压的25倍时,它会变成一种结晶固体,并且像液体一样,显示出与应用于许多相互作用粒子系统的量子力学原理相一致的有趣特性。在足够低的温度下,液氦进入一种被称为超流性的状态,这是超导性的类似物。该团队将探索不完美的氦晶体的惊人特性,这些特性是量子力学和氦原子的轻质量的结果。这些包括氦原子通过固体的无摩擦传输和在实验中观察到的令人困惑的塑性现象,目前还没有令人满意的理论解释。该研究团队有能力在这些具有挑战性的基础和技术问题上推进知识,部分原因是他们开发的计算工具非常适合研究具有强相互作用粒子的系统,例如某些材料中的电子和氦原子在极冷温度和适度压力下的电子。该项目还支持培养研究生和博士后。博士研究人员在先进的数值技术,量子统计,凝聚态和原子物理学的热点问题,高性能计算。该项目还有助于推进精密多体物理计划,该计划旨在促进国际合作,开展尖端研究,以了解包括量子物质在内的物质的集体性质。在这方面计划开展的活动包括:两个主要的国际研讨会,美国物理学会三月会议的重点会议,技术总结该奖项支持理论和计算研究,旨在通过使用两个最先进的第一-相关量子多体系统的原理方法:蠕虫算法(WA)和图解蒙特卡罗(DiagMC);这两种方法都是由研究团队介绍的。该项目的主要目标是:(一)DiagMC研究关联电子原型模型中的库珀不稳定性:具有库仑和电子-声子相互作用的系统以及排斥性费米-哈伯德模型。(ii)新型极化子态的DiagMC研究。(iii)固体He-4中无序诱导量子物理的WA研究。(iv)该项目还支持在高级数值技术、量子统计、凝聚态和原子物理的热点问题以及高性能计算方面培训研究生和博士后研究人员。该项目还有助于推进精密多体物理计划,该计划旨在促进国际合作,开展尖端研究,以了解包括量子物质在内的物质的集体性质。在此背景下计划的活动包括:两个主要的国际研讨会,在美国物理学会3月会议的重点会议,并在马萨诸塞大学阿默斯特分校专题小型研讨会。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomalously small excitation gaps as precursors of dislocation core superfluidity in solid helium-4
异常小的激发间隙是固体氦 4 中位错核心超流性的前兆
  • DOI:
    10.1103/physrevb.104.l060507
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kuklov, Anatoly;Polturak, Emil;Prokof'ev, Nikolay;Svistunov, Boris
  • 通讯作者:
    Svistunov, Boris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anatoly Kuklov其他文献

Anatoly Kuklov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anatoly Kuklov', 18)}}的其他基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720251
  • 财政年份:
    2017
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1314469
  • 财政年份:
    2013
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
International Workshop Supersolids 2011
2011 年超固体国际研讨会
  • 批准号:
    1063344
  • 财政年份:
    2011
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1005527
  • 财政年份:
    2010
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm algorithm and Diagrammatic Monte Carlo in atomic and condensed matter physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    0653135
  • 财政年份:
    2007
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: ITR-(ASE)-(sim) : Worm algorithm and diagrammatic Monte Carlo for strongly correlated atomic and condensed matter systems
合作研究:ITR-(ASE)-(sim):用于强相关原子和凝聚态物质系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    0426814
  • 财政年份:
    2004
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218382
  • 财政年份:
    2022
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218119
  • 财政年份:
    2022
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032077
  • 财政年份:
    2020
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720251
  • 财政年份:
    2017
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1720465
  • 财政年份:
    2017
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1314469
  • 财政年份:
    2013
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1314735
  • 财政年份:
    2013
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
  • 批准号:
    1005543
  • 财政年份:
    2010
  • 资助金额:
    $ 20.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了