Testing Stress Percolation as a Model for Stress Transmission in Rocks

测试应力渗透作为岩石中应力传递的模型

基本信息

  • 批准号:
    1417218
  • 负责人:
  • 金额:
    $ 32.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This project will test stress percolation hypothesis and its utility for working with geologic materials. Both scientists and engineers have assumed that when a rock is loaded by either tectonic forces or within the context of engineering projects, the load is borne evenly throughout the rock. The PI has developed an alternative hypothesis that the stresses produced by external loads on a rock are distributed throughout the rock according to a pattern that resembles the pattern created by water flowing through otherwise dry sand. If the hypothesis proves correct, then stress distribution in rocks will join a large class of phenomena that exhibit 'percolation' behavior, including the patterns of stress distribution observed in granular materials. Thus one implication of the hypothesis is that there is a single unifying physical model for deformation of all earth materials. The value in understanding the stress distribution in rocks is that it will allow us to create better models of rock deformation and better predict the mechanical behavior of rocks, which has implications for deepening our understanding of a variety of Earth processes as well engineering applications. The existence of stress percolation and a refined understanding of how it operates in rocks has tremendous implications for many disciplines beyond geophysics. Researchers in materials science, metallurgy, and shock physics, all struggle with the so called 'polycrystalline problem' - like rocks, many solid materials are composed of aggregates of crystalline grains with a variety of properties. Understanding the response to loading of many of these materials has presented challenges similar to those experienced by those working on rock deformation. Thus, this research will contribute to a better understanding of mechanical problems in all of these disciplines. Using finite element (FEM) simulations of a polycrystalline material the PI has recently shown that local variations in stress and strain participate in large-scale patterns, likely caused by stress percolation. The patterns are a function of the heterogeneity and statistical distribution of elastic and plastic properties across the population of mechanical components (grains and grain boundaries) in the material. Greater degrees of heterogeneity lead to more intense stress concentrations across a less dense pattern. Lower degrees of elastic heterogeneity lead to a denser pattern of stress transmission that carries smaller modulations. Paralleling the development of shear bands in granular materials, the stress patterns lead directly to shear localization. The proposed project will compare the stress and strain heterogeneity observed in experimentally deformed mono-phase rocks with the stress and strain heterogeneity observed in FE models tuned to simulate these rocks. Specifically, the variation in the orientation of local stress tensor as predicted by FE models will be compared with microstructures that are sensitive to the compression direction such as twins and kinkbands and the distribution of the magnitude of the local compressive stress predicted by the FE models will be compared with local compressive stress distributions derived from synchrotron x-ray diffraction data from in-situ deformation experiments. Model design elements to be examined include the shapes of grains, grain boundary and grain interior rheology, as well as model size and aspect ratio. The impact of using 2D vs 3D models will also be examined. Additional direct comparisons will be made between the pattern of variation in microstrains observed on the surface of experimentally deformed polycrystalline slabs and the results from FE models built to match EBSD maps of the slab surfaces. These comparisons between models and experimental data will provide a test of the stress percolation hypothesis and provide a foundation for further investigations of stress percolation.
该项目将测试应力渗透假说及其用于使用地质材料的实用性。 科学家和工程师都认为,当岩石由构造力量或工程项目的背景下,岩石在整个岩石中均匀地持有。 PI提出了一个替代假设,即,岩石上外部载荷产生的应力是根据类似于流经原本干砂的水产生的模式的模式。 如果该假设证明是正确的,那么岩石中的应力分布将与表现出“渗透”行为的大量现象,包括在颗粒材料中观察到的应力分布模式。 因此,该假设的一个含义是,有一个单一的统一物理模型来变形所有地球材料。理解岩石中应力分布的价值是,它将使我们能够创建更好的岩石变形模型,并更好地预测岩石的机械行为,这对我们加深了我们对各种地球过程的理解以及工程应用的影响。 压力渗透的存在以及对岩石中其运作方式的精致理解对除地球物理以外的许多学科具有巨大的影响。 材料科学,冶金和冲击物理学的研究人员都在与所谓的“多晶问题”中挣扎 - 像岩石一样,许多固体材料由具有多种特性的结晶晶粒骨料组成。 了解许多这些材料对加载的反应已经提出了与从事岩石变形的人相似的挑战。 因此,这项研究将有助于更好地理解所有这些学科的机械问题。使用PI的有限元(FEM)模拟PI最近表明,应力和应变的局部变化参与了大规模模式,这可能是由应力渗透引起的。这些模式是材料中机械组件(晶粒和晶界)群体中弹性和塑性特性的异质性和统计分布的函数。 较高程度的异质性导致越来越密集的胁迫浓度更加强烈。 较低的弹性异质性导致应力传播的较密集的模式,该模式带来了较小的调制。 应力模式与颗粒材料中的剪切带的发展平行,直接导致剪切定位。 该提出的项目将比较在实验变形的单相岩石中观察到的应力和应变异质性与在调谐以模拟这些岩石的FE模型中观察到的应力和应变异质性。 具体而言,Fe模型预测的局部应力张量的方向的变化将与对压缩方向敏感的微观结构进行比较,例如双胞胎和扭结频带以及Fe模型预测的局部压缩应力的大小的分布将与来自SynchRotron X量X型乘以从SynCheration In-Sytecation In-Sytecation Inscation Incitation Incoration Insitumation synchrotron x-ray fraction Incoration syeration Furemations相比。要检查的模型设计元素包括谷物,晶界和晶粒内部流变学的形状,以及模型大小和纵横比。也将检查使用2D与3D模型的影响。将在实验变形的多晶平板表面观察到的微构株的变化模式与构建的Fe模型的结果之间进行其他直接比较,以匹配平板表面的EBSD图。模型和实验数据之间的这些比较将提供应力渗透假设的测试,并为进一步研究应力渗透提供了基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pamela Burnley其他文献

Pamela Burnley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pamela Burnley', 18)}}的其他基金

Collaborative Proposal GEOPAths:IN Recruiting through location-based Curriculum and Field and Laboratory Research Experience for High School Students, Teachers and Undergraduates
合作提案 GEOPAths:IN 通过基于地点的课程以及针对高中生、教师和本科生的现场和实验室研究经验进行招聘
  • 批准号:
    2119989
  • 财政年份:
    2022
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
CSEDI合作研究:深地条件下塑性变形实验研究的巨大挑战
  • 批准号:
    1361339
  • 财政年份:
    2014
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
In-situ Synchrotron X-ray Diffraction Study of Quartz Deformation
石英变形的原位同步加速器 X 射线衍射研究
  • 批准号:
    0838579
  • 财政年份:
    2009
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
Collaborative Research: COMPRES Grand Challenges for Experimental Study of Plastic Deformation
合作研究:COMRES 塑性变形实验研究的巨大挑战
  • 批准号:
    0813789
  • 财政年份:
    2008
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战
  • 批准号:
    0741521
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战
  • 批准号:
    0652894
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: COMPRES Grand Challenges for Experimental Study of Plastic Deformation
合作研究:COMRES 塑性变形实验研究的巨大挑战
  • 批准号:
    0136107
  • 财政年份:
    2002
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
Collaborative REU Site Proposal: Atlanta Consortium for Research in the Earth Sciences (ACRES): Research Experiences for Undergraduates and Science Teachers
REU 合作场地提案:亚特兰大地球科学研究联盟 (ACRES):本科生和科学教师的研究经验
  • 批准号:
    0139539
  • 财政年份:
    2002
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
REU--COLLABORATIVE RESEARCH: Atlanta Consortium for Research in the Earth Sciences (ACRES): Research for Undergraduates and Science Teachers
REU--合作研究:亚特兰大地球科学研究联盟 (ACRES):针对本科生和科学教师的研究
  • 批准号:
    9820666
  • 财政年份:
    1999
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Continuing Grant
Investigation of Internal Stresses and Strains Induced by the Olivine-Spinel Transformation: Mechanical Models and Microstructural Observations
橄榄石-尖晶石转变引起的内应力和应变的研究:力学模型和微观结构观察
  • 批准号:
    9896090
  • 财政年份:
    1998
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

红外辐射协同交变压力对蓝莓干燥过程水分迁移与花色苷释放的影响机理及优化调控
  • 批准号:
    32301724
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于技术压力视角的智能技术在医疗健康服务中双面效应的研究
  • 批准号:
    72361034
  • 批准年份:
    2023
  • 资助金额:
    26 万元
  • 项目类别:
    地区科学基金项目
抗压力的神经脑肠轴机制
  • 批准号:
    32371213
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机械力通过Piezo1与细胞骨架作用环路抑制成纤维细胞线粒体分裂在压力性尿失禁发生中的机制研究
  • 批准号:
    82301828
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于组蛋白修饰精准调控肝血窦内皮细胞分泌的COL4影响门静脉压力的机制研究
  • 批准号:
    82300711
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Studentship
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343727
  • 财政年份:
    2024
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Continuing Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
  • 批准号:
    2305691
  • 财政年份:
    2024
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Fellowship Award
NSF Postdoctoral Fellowship in Biology: Investigating the role of thermal stress response in facilitating adaptation in camel spiders
美国国家科学基金会生物学博士后奖学金:研究热应激反应在促进骆驼蜘蛛适应中的作用
  • 批准号:
    2305969
  • 财政年份:
    2024
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Fellowship Award
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
  • 批准号:
    2322117
  • 财政年份:
    2024
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了