Statistical Methods for Ice Sheet Projections using Large Non-Gaussian Space-Time Data Sets and Complex Computer Models
使用大型非高斯时空数据集和复杂计算机模型的冰盖投影统计方法
基本信息
- 批准号:1418090
- 负责人:
- 金额:$ 50.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to study the past, current, and future behavior of the Antarctic ice sheet by using novel statistical methods for combining information from both state-of-the-art ice sheet models and observational data. Ice sheet models such as the PSU 3D ice sheet model may be used to understand the interplay between the processes that drive the behavior of the Antarctic ice sheet. They can also be used to project the future behavior of the ice sheet, which is of great interest in projections of climate change, particularly sea level rise. Learning about future sea-level rise is important not only to scientists but also policymakers. This interdisciplinary research project combines expertise in statistical methodology, ice sheet modeling, computing, and forcing scenarios.Because ice sheet model outputs are high-dimensional, non-Gaussian, and spatio-temporal, existing approaches for computer model emulation and calibration either do not apply or are computationally infeasible. It is challenging to build computationally expedient methods that are flexible enough to utilize all the information in large data sets and account for uncertainties, complicated errors, and dependencies. We will develop new statistical models and algorithms to address this challenge. Our statistical methodology will build upon Markov random field models (Gaussian and non-Gaussian), composite likelihood and related likelihood approximation methods, and principal components methods generalized to exponential families. The objectives are twofold: (i) developing new statistical and computational methods for emulation (stochastic approximation) of and calibration (input parameter learning) for complex computer models with high-dimensional non-Gaussian space-time data, and (ii) learning the major scientific processes driving the behavior of the Antarctic ice sheet and making projections for ice retreat in this region in the future using, for the first time in this context, information from geologic data over the past 20,000 years. We will focus on the Amundsen Sea Sector of West Antarctica, which contains the rapidly retreating and thinning Pine Island and Thwaites Glaciers; this sector is currently the largest Antarctic contributor to sea-level rise and is considered particularly vulnerable to drastic future retreat. Rigorous statistical comparisons of our ice-sheet model versus geologic data in this sector during the deglacial recession of the last 20,000 years will yield more robust and confident predictions of further future retreat. We will also explore sensitivity of Antarctic ice sheet response to atmosphere-ocean processes as driven by scenarios estimated from coupled earth system models. The processes driving the regional ice sheet will be investigated within the components of the Community Earth System Model (CESM). Ice sheet melting influences sea level rise and can have major impacts on human and ecological systems. Hence, understanding them is paramount to scientists and policy makers. The statistical methodology and computational tools developed here will be widely applicable across a range of disciplines where computer models with high-dimensional output are common; these fields include ecology, hydrology, mechanical engineering, and astronomy. Our efficient methods and software will allow us (and others) to routinely fit more sophisticated models to larger data sets than currently feasible, thus using as much information as possible when drawing scientific conclusions. This will allow for reduced uncertainties, thereby turning the size of the data sets into an asset.
该项目的目标是通过结合最先进的冰盖模型和观测数据的信息,使用新颖的统计方法来研究南极冰盖的过去、现在和未来的行为。像PSU 3D冰盖模型这样的冰盖模型可以用来理解驱动南极冰盖行为的过程之间的相互作用。它们还可以用来预测冰盖的未来行为,这对预测气候变化,特别是海平面上升非常感兴趣。了解未来海平面上升的情况不仅对科学家很重要,对政策制定者也很重要。这个跨学科的研究项目结合了统计方法、冰盖建模、计算和强迫情景的专业知识。由于冰盖模型的输出是高维的、非高斯的和时空的,现有的计算机模型模拟和校准方法要么不适用,要么在计算上不可行。构建计算上的权宜方法是具有挑战性的,这些方法足够灵活,可以利用大型数据集中的所有信息,并考虑不确定性、复杂的错误和依赖性。我们将开发新的统计模型和算法来应对这一挑战。我们的统计方法将建立在马尔科夫随机场模型(高斯和非高斯),复合似然和相关似然近似方法,以及推广到指数族的主成分方法。目标有两个:(i)开发新的统计和计算方法,用于模拟(随机近似)和校准(输入参数学习)具有高维非高斯时空数据的复杂计算机模型;(ii)学习驱动南极冰盖行为的主要科学过程,并在此背景下首次使用来自过去2万年地质数据的信息对该地区未来的冰退缩进行预测。我们将把重点放在南极洲西部的阿蒙森海地区,那里有迅速退缩和变薄的松岛和斯韦茨冰川;这部分目前是南极海平面上升的最大贡献者,并且被认为特别容易受到未来急剧退缩的影响。将我们的冰盖模型与过去2万年冰期消退期间该区域的地质数据进行严格的统计比较,将对未来的进一步退缩产生更可靠和更有信心的预测。我们还将探讨南极冰盖对由耦合地球系统模式估计的情景驱动的大气-海洋过程响应的敏感性。驱动区域冰盖的过程将在社区地球系统模式(CESM)的组成部分内进行研究。冰盖融化影响海平面上升,并可能对人类和生态系统产生重大影响。因此,了解它们对科学家和决策者来说至关重要。这里开发的统计方法和计算工具将广泛适用于具有高维输出的计算机模型的一系列学科;这些领域包括生态学、水文学、机械工程和天文学。我们高效的方法和软件将使我们(和其他人)能够常规地将比目前可行的更复杂的模型应用于更大的数据集,从而在得出科学结论时使用尽可能多的信息。这将减少不确定性,从而将数据集的大小转化为资产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murali Haran其他文献
Guest Editors’ Introduction to the Special Issue on “Computer Models and Spatial Statistics for Environmental Science”
- DOI:
10.1007/s13253-011-0071-9 - 发表时间:
2011-10-27 - 期刊:
- 影响因子:1.100
- 作者:
Brian J. Reich;Murali Haran - 通讯作者:
Murali Haran
Chapter 1 Gaussian random field models for spatial data
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Murali Haran - 通讯作者:
Murali Haran
A Review of “Computer Age Statistical Inference” by Bradley Efron and Trevor Hastie
- DOI:
10.1007/s11004-017-9721-y - 发表时间:
2018-01-23 - 期刊:
- 影响因子:3.600
- 作者:
Murali Haran - 通讯作者:
Murali Haran
Murali Haran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murali Haran', 18)}}的其他基金
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0722351 - 财政年份:2007
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Simulation and optimization of novel control methods for improving field operation of absorption chiller ice storage system
用于改善吸收式制冷机冰蓄冷系统现场运行的新型控制方法的仿真和优化
- 批准号:
543217-2019 - 财政年份:2020
- 资助金额:
$ 50.05万 - 项目类别:
Collaborative Research and Development Grants
Application of ultrasonic nondestructive testing methods to the mechanical properties of sea ice
超声波无损检测方法在海冰力学性能中的应用
- 批准号:
20K04955 - 财政年份:2020
- 资助金额:
$ 50.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of methods of melting and refreezing of snow, ice, and permafrost, and observation of snow cover change in the Arctic
开发雪、冰和永久冻土的融化和再冻结方法以及北极积雪变化的观测
- 批准号:
19K14796 - 财政年份:2019
- 资助金额:
$ 50.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simulation and optimization of novel control methods for improving field operation of absorption chiller ice storage system
用于改善吸收式制冷机冰蓄冷系统现场运行的新型控制方法的仿真和优化
- 批准号:
543217-2019 - 财政年份:2019
- 资助金额:
$ 50.05万 - 项目类别:
Collaborative Research and Development Grants
Quasi-realtime detection of basal melting of the Greenland Ice Sheet by seismological methods
利用地震学方法准实时检测格陵兰冰盖基底融化情况
- 批准号:
18K03794 - 财政年份:2018
- 资助金额:
$ 50.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Methods for Sea Ice Modeling
海冰模拟的数值方法
- 批准号:
524564-2018 - 财政年份:2018
- 资助金额:
$ 50.05万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Time Matters - A Comparison of Diatom 14C and Thermochemical 14C Dating Methods in Sediment Records of Ice Retreat from the East and West Antarctic Margins
合作研究:时间很重要——硅藻 14C 和热化学 14C 测年方法在东西南极边缘冰退缩沉积物记录中的比较
- 批准号:
1644117 - 财政年份:2017
- 资助金额:
$ 50.05万 - 项目类别:
Continuing Grant
Collaborative Research: Time Matters - A Comparison of Diatom 14C and Thermochemical 14C Dating Methods in Sediment Records of Ice Retreat from the East and West Antarctic Margins
合作研究:时间很重要——硅藻 14C 和热化学 14C 测年方法在东西南极边缘冰退缩沉积物记录中的比较
- 批准号:
1643298 - 财政年份:2017
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant
Colloborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods
合作研究:利用环境地震噪声方法监测南极冰盖变化
- 批准号:
1643761 - 财政年份:2017
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant
Colloborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods
合作研究:利用环境地震噪声方法监测南极冰盖变化
- 批准号:
1643795 - 财政年份:2017
- 资助金额:
$ 50.05万 - 项目类别:
Standard Grant