Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks

合作研究:复杂基因调控网络的半参数 ODE 模型

基本信息

  • 批准号:
    1418172
  • 负责人:
  • 金额:
    $ 16.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Gene regulation plays a fundamental role in cellular activities and functions, such as growth, division, and responses to environmental stimuli. The regulatory interactions among genes and their expression products (RNAs and proteins) intertwine into complex and dynamic gene regulatory networks (GRNs) in cells. Recent technical breakthrough has enabled large-scale experimental studies of GRNs. A central question in GRN analysis is to elucidate network topologies and dynamics that give rise to biological properties at study. However, the magnitude and complexity of these network data pose serious challenges in extracting useful information from within. This project aims to develop statistical and computational tools to reveal underlying structure, dynamics, and functionality of GRNs. New statistical theory and inference methods will be developed to tackle theoretical and computational challenges in modeling and analyzing large-scale GRNs. Results from this research will establish a novel framework to dissect dynamical and complex biological networks, and particularly a GRN that regulates cell proliferation in our case study. Traditional statistical analysis of GRNs typically assumes that interactions between network nodes can be described by linear functions or low-order polynomials. However, biological processes are usually complex and molecular interactions between network nodes may not be accurately described by simple functions. The main goal of this project is to develop novel and flexible statistical approaches to dissect and reconstruct GRNs by learning nonlinear interactions from time-course experimental data, with either continuous- or discrete-valued gene expression. Specifically, we will develop new modeling and analysis approaches to study GRNs using semiparametric ordinary differential equations (ODEs), and will develop state of art computational tools to characterize the structures and dynamics of GRNs, to help scientists address crucial cellular systems regulated by GRNs. The project has two parts. The first part focuses on Methods and Theory, consisting of three aims: (1) to develop new and automated statistical procedures for studying local patterns and dynamic structures in large and complex GRNs; (2) to establish valid statistical inferences on topological features and regulatory interactions of GRNs; and (3) to develop efficient computational algorithms and software for analyzing large-scale GRNs. Developed methods from this research will provide valuable tools for modeling the topologies and dynamics of GRNs using ODEs. In the second part, we will focus on real data applications. Specifically, we will apply newly developed tools in the first part to analyze a retinoblastoma (Rb)-E2F gene network, which plays a key role in controlling cell proliferation and the gene regulation within which is frequently disrupted in human diseases such as cancer and aging.
基因调控在细胞活动和功能中起着重要作用,如生长,分裂和对环境刺激的反应。基因及其表达产物(RNA和蛋白质)之间的相互调控作用交织成细胞内复杂而动态的基因调控网络(GRNs)。最近的技术突破使大规模的实验研究GRNs。GRN分析中的一个中心问题是阐明网络拓扑结构和动态,从而产生研究中的生物学特性。然而,这些网络数据的规模和复杂性对从内部提取有用信息提出了严峻的挑战。该项目旨在开发统计和计算工具,以揭示GRNs的潜在结构,动力学和功能。将开发新的统计理论和推理方法,以解决建模和分析大规模GRNs的理论和计算挑战。这项研究的结果将建立一个新的框架来剖析动态和复杂的生物网络,特别是在我们的案例研究中调节细胞增殖的GRN。传统的GRN统计分析通常假设网络节点之间的交互可以用线性函数或低阶多项式来描述。然而,生物过程通常是复杂的,网络节点之间的分子相互作用可能无法用简单的函数准确描述。该项目的主要目标是开发新的和灵活的统计方法来解剖和重建GRNs通过学习非线性相互作用的时间过程的实验数据,无论是连续或离散值的基因表达。具体来说,我们将开发新的建模和分析方法,使用半参数常微分方程(ODE)研究GRNs,并将开发最先进的计算工具来表征GRNs的结构和动力学,以帮助科学家解决由GRNs调节的关键细胞系统。该项目有两个部分。第一部分侧重于方法和理论,包括三个目标:(1)开发新的和自动化的统计程序,用于研究大型和复杂的GRNs中的局部模式和动态结构;(2)建立有效的统计推断的拓扑特征和调控相互作用的GRNs;和(3)开发有效的计算算法和软件,用于分析大规模GRNs。从这项研究中开发的方法将提供有价值的工具,建模的拓扑结构和动态的GRN使用ODE。在第二部分中,我们将关注真实的数据应用。具体来说,我们将在第一部分中应用新开发的工具来分析视网膜母细胞瘤(Rb)-E2 F基因网络,该网络在控制细胞增殖和基因调控中起着关键作用,在癌症和衰老等人类疾病中,该网络经常被破坏。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guang Yao其他文献

Morphology and Mechanical Properties of Vibratory Organs in the Leaf-cutting Ant (Atta cephalotes)
切叶蚁(Atta cephalotes)振动器官的形态和机械特性
  • DOI:
    10.1007/s42235-018-0060-6
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Guang Yao;Lin Feng;Deyuan Zhang;Xinggang Jiang
  • 通讯作者:
    Xinggang Jiang
Hydrothermal growth of nanorod arrays and in situ conversion to nanotube arrays for highly efficient Ag-sensitized photocatalyst
纳米棒阵列的水热生长和原位转化为纳米管阵列,用于高效银敏化光催化剂
  • DOI:
    10.1016/j.jallcom.2016.08.001
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Jiajia Tao;Zezhou Gong;Guang Yao;Yunlang Cheng;Miao Zhang;Jianguo Lv;Shiwei Shi;Gang He;Xiaoshuang Chen;Zhaoqi Sun
  • 通讯作者:
    Zhaoqi Sun
Effect of composite retarder on early properties of C<sub>12</sub>A<sub>7</sub>-CaSO<sub>4</sub>-cement composite materials
  • DOI:
    10.1016/j.conbuildmat.2024.137480
  • 发表时间:
    2024-09-06
  • 期刊:
  • 影响因子:
  • 作者:
    Yiren Wang;Jiangtao Zhang;Jie Liu;Yu Zheng;Kaihui Hua;Bochao Sun;Guang Yao
  • 通讯作者:
    Guang Yao
Identification of an allele-specific transcription factor binding interaction that regulates PLA2G2A gene expression
鉴定调节 PLA2G2A 基因表达的等位基因特异性转录因子结合相互作用
  • DOI:
    10.1101/2023.12.12.571290
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aki Hara;Eric Lu;Laurel Johnstone;M. Wei;Shudong Sun;B. Hallmark;Joseph C Watkins;Hao Helen Zhang;Guang Yao;Floyd H. Chilton
  • 通讯作者:
    Floyd H. Chilton
Central-peripheral nervous system activation in exoskeleton modes: A Granger causality analysis via EEG-EMG fusion
外骨骼模式下中枢-外周神经系统的激活:基于 EEG-EMG 融合的格兰杰因果分析
  • DOI:
    10.1016/j.eswa.2024.126311
  • 发表时间:
    2025-04-05
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Xiabing Zhang;Yuqin Li;Pengfei Zhang;Dexian Wang;Guang Yao;Peng Xu
  • 通讯作者:
    Peng Xu

Guang Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guang Yao', 18)}}的其他基金

Collaborative Research: Modeling the Coupling of Epigenetic and Transcriptional Regulation
合作研究:模拟表观遗传和转录调控的耦合
  • 批准号:
    1463137
  • 财政年份:
    2015
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
  • 批准号:
    2210659
  • 财政年份:
    2022
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
  • 批准号:
    2210658
  • 财政年份:
    2022
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
  • 批准号:
    1507078
  • 财政年份:
    2015
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
  • 批准号:
    1507620
  • 财政年份:
    2015
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
  • 批准号:
    1459967
  • 财政年份:
    2015
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
  • 批准号:
    1459931
  • 财政年份:
    2015
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
  • 批准号:
    1418202
  • 财政年份:
    2014
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
  • 批准号:
    1106815
  • 财政年份:
    2011
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Standard Asymptotic Theory for Semiparametric Estimators
合作研究:半参数估计的非标准渐近理论
  • 批准号:
    1124174
  • 财政年份:
    2011
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Semiparametric Conditional Graphical Models with Applications to Gene Network Analysis
合作研究:半参数条件图形模型及其在基因网络分析中的应用
  • 批准号:
    1107025
  • 财政年份:
    2011
  • 资助金额:
    $ 16.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了