Multivariate splines in algebra, analysis, and combinatorics

代数、分析和组合学中的多元样条

基本信息

  • 批准号:
    1419103
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This research project is at the interface among multiple sub-disciplines of mathematics: analysis, approximation theory, and data representation on the one hand; combinatorics and algebra on the other hand. The research involves the construction of a new spline class. Past mathematical research on the theory and practice of spline functions led to some of the most significant contributions of the mathematical community to science and technology. Splines have become indispensable tools in computer-aided design and manufacturing of cars and airplanes, in the production of printers' typesets, in automated cartography, in the production of movies, and in many other areas, often concealed at the core of elaborate software packages. This project will merge knowledge and skills from disparate areas of mathematics to provide new multivariate spline constructions as well as new theoretical results in algebra and geometry.Spline functions are piecewise-polynomials in one or several variables. Zonotopal algebra is a mathematical methodology that encodes combinatorial and geometric properties in rich algebraic and analytic structures. It presently handles the special polytope known as a zonotope and its dual hyperplane arrangement. At its core one finds the spline theory known as box splines, splines that are defined over zonotopes, arguably the most successful spline theory in several variables. Zonotopal algebra and its associated box splines are connected to a myriad of topics inside and outside mathematics, including approximation, wavelets, subdivision, matroids, graphs, algebraic geometry and more. There is evidence that zonotopal algebra should have a pair of spline constructs: box splines and another spline class over the dual geometry. This project aims to recover this additional class, in particular through extending zonotopal algebra to a class of polytopes that are invariant under group actions. Embedding such invariance into zonotopal algebra and understanding the correct algebraic structures and spline constructions over these non-commutative geometries is another goal of this project.
这个研究项目是在数学的多个子学科之间的接口:一方面分析,逼近理论和数据表示;另一方面组合学和代数。该研究涉及到一个新的样条类的建设。过去对样条函数的理论和实践的数学研究导致了数学界对科学和技术的一些最重要的贡献。样条曲线已经成为计算机辅助设计和制造汽车和飞机、打印机排版、自动制图、电影制作以及许多其他领域中不可或缺的工具,通常隐藏在精心制作的软件包的核心中。这个项目将融合不同数学领域的知识和技能,提供新的多元样条构造以及代数和几何的新理论结果。样条函数是一个或多个变量的分段多项式。Zonotopal代数是一种数学方法,它以丰富的代数和分析结构编码组合和几何属性。它目前处理的特殊多面体称为zonotope和它的双超平面安排。在它的核心,人们发现样条理论被称为箱样条,样条定义在zonotopes,可以说是最成功的样条理论在几个变量。Zonotopal代数及其相关的盒样条连接到数学内外的无数主题,包括近似,小波,细分,拟阵,图形,代数几何等等。有证据表明,zonotopal代数应该有一对样条结构:盒样条和另一个样条类的对偶几何。这个项目的目的是恢复这个额外的类,特别是通过扩展zonotopal代数一类的多面体是不变的群体行动。将这种不变性嵌入到zonotopal代数中,并理解这些非交换几何上的正确代数结构和样条构造是本项目的另一个目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amos Ron其他文献

Relations between the support of a compactly supported function and the exponential-polynomials spanned by its integer translates
  • DOI:
    10.1007/bf01889354
  • 发表时间:
    1990-06-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Amos Ron
  • 通讯作者:
    Amos Ron
Recurrence relations for Tchebycheffian B-splines
  • DOI:
    10.1007/bf02791121
  • 发表时间:
    1988-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Nira Dyn;Amos Ron
  • 通讯作者:
    Amos Ron
Factorization theorems for univariate splines on regular grids
  • DOI:
    10.1007/bf02807218
  • 发表时间:
    1990-02-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Amos Ron
  • 通讯作者:
    Amos Ron

Amos Ron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amos Ron', 18)}}的其他基金

Modulation Splines
调制样条
  • 批准号:
    0914986
  • 财政年份:
    2009
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
L-CAMP: Extremely Local High-Performance Wavelet Representations in High Spatial Dimension
L-CAMP:高空间维度中的极其局部高性能小波表示
  • 批准号:
    0602837
  • 财政年份:
    2006
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
ITR: A Multiresolution Analysis for the Global Internet
ITR:全球互联网的多分辨率分析
  • 批准号:
    0085984
  • 财政年份:
    2000
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
KDI: Towards Ideal Data Representations
KDI:迈向理想的数据表示
  • 批准号:
    9872890
  • 财政年份:
    1998
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Multivariate Spline Approximation & Multivariate Polynomial Interpolation
数学科学:多元样条逼近
  • 批准号:
    9102857
  • 财政年份:
    1991
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant

相似国自然基金

适用于非线性、非平稳变量的非参数有效估计方法及其在资本资产定价理论中的应用
  • 批准号:
    71803166
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Seamless Integration Between CAD and FEA of Thin-Walled Structures Using Splines With Extraordinary Points
ERI:使用具有非常点的样条线在薄壁结构的 CAD 和 FEA 之间无缝集成
  • 批准号:
    2138187
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Structure-Preserving Discretizations: Finite Elements, Splines, and Isogeometric Analysis
结构保持离散化:有限元、样条曲线和等几何分析
  • 批准号:
    1914795
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Development of a next-generation IGA-BEM based on T-splines to investigate the performance of complex-shaped wave energy devices undergoing strong mutual interactions in large arrays
开发基于T样条的下一代IGA-BEM,以研究在大型阵列中经历强相互作用的复杂形状波浪能装置的性能
  • 批准号:
    18K13939
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Generalization of Non-Uniform Rational Bezier Splines: Theory and Applications
非均匀有理贝塞尔样条的推广:理论与应用
  • 批准号:
    1661597
  • 财政年份:
    2017
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Self-Adaptive, Parallel, Isogeometric Analysis (IGA) Using T-Splines and LR-B-Splines for the First-Order Form of the Neutron Transport Equation with
使用 T 样条和 LR-B 样条对中子输运方程的一阶形式进行自适应并行等几何分析 (IGA)
  • 批准号:
    1869743
  • 财政年份:
    2016
  • 资助金额:
    $ 41万
  • 项目类别:
    Studentship
Combinatorial algebraic geometry: Modern Schubert calculus and generalized splines
组合代数几何:现代舒伯特微积分和广义样条
  • 批准号:
    1362855
  • 财政年份:
    2014
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Rational Geometric Splines for Isogeometric Analysis
用于等几何分析的有理几何样条
  • 批准号:
    1418742
  • 财政年份:
    2014
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
Improving Virtual Product Development Through Isogeometric Analysis Based on Rational Triangular Bezier Splines
基于有理三角贝塞尔样条的等几何分析改进虚拟产品开发
  • 批准号:
    1435072
  • 财政年份:
    2014
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
Splines of complex order, fractional operators and applications to signal and image processing
复阶样条、分数算子以及在信号和图像处理中的应用
  • 批准号:
    246954628
  • 财政年份:
    2013
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grants
Methods for generating High Precision Digital Maps using Circular Arc Splines
利用圆弧样条生成高精度数字地图的方法
  • 批准号:
    225923277
  • 财政年份:
    2012
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了