Center for Emergent Materials

新兴材料中心

基本信息

  • 批准号:
    1420451
  • 负责人:
  • 金额:
    $ 1791.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-11-01 至 2021-10-31
  • 项目状态:
    已结题

项目摘要

****Nontechnical abstract****Innovations in materials are central to enabling new technology and enhancing human well-being in a changing world. Discovery of new materials and the novel phenomena they engender lies at the heart of many of these innovations. The emerging materials and their associated phenomena are increasingly complex, so success at this endeavor requires the coordinated effort of a team of scientists and technologists that bring a range of talents to bear. The Ohio State University Center for Emergent Materials (CEM) realizes innovative science and complex materials discovery by engaging researchers from diverse backgrounds and disciplines in an enabling and collaborative environment. The Center is creating novel materials that build on, and control, opposing, but delicately balanced tendencies and internal pressures within carefully constructed materials to create new phases of matter and produce novel magnetism. Features of single-atom-thick materials created by Center researchers are tuned by adding selected atoms to their surfaces in controlled patterns that produce remarkable one-dimensional interfaces whose properties are under exploration. The Center is a leader in using the magnetic properties of electrons to transmit magnetic information using innovative methods based on flow of heat and coherent motions of arrays of magnetic electrons. The Center is using innovative approaches to ensure that its scientific endeavors benefit from the contributions of women and underrepresented groups. The training and education of young scientists is integrated into the Center's scientific research improving its ability to recruit, retain and teach diverse undergraduates, graduates, and postdoctoral researchers.****Technical abstract****The Center is creating novel materials that tune the delicate interplay between interactions arising from electronic charge and interactions between an electron's spin and its motion to enable topological phases, quantum phase transitions and novel magnetism. This tuning will be achieved by using heavier elements where spin interacts strongly with electronic motion and will exploit modification of the material's chemistry, structure and internal pressures imposed by a neighboring material. The Center is also creating new, single-atom thick 2D materials composed of heavier atoms that allow tuning of electronic properties by covalently attaching atoms on the layer's surface to enable novel electronic phases and spin physics. Delicately controlled spatial patterning of these sheets creates the exciting possibility of novel 1D interfaces. The Center will open a new frontier in transmission of spin by pushing into the nonlinear regime in which the characteristic properties depend on how hard spins are driven by studying the behavior of these currents passing through materials whose magnetism is spatially modulated. This nonlinear response could allow spin transport science to move beyond diffusive spin currents to enable novel approaches to spin manipulation and control for next generation spintronics. Undergrad labs created by Center faculty that are based on their research topics help prepare the next scientific generation. Center faculty are participants in the newly established and externally funded Masters-to-Ph.D. minority Bridge Program that increases the pool of qualified faculty candidates.
*非技术摘要*材料创新是在不断变化的世界中实现新技术和提高人类福祉的核心。新材料的发现及其产生的新奇现象是许多这些创新的核心。新兴材料及其相关现象越来越复杂,因此这项工作的成功需要一组科学家和技术人员的协调努力,他们带来了一系列的人才。俄亥俄州立大学应急材料中心(CEM)通过吸引来自不同背景和学科的研究人员在有利和协作的环境中实现创新科学和复杂材料的发现。该中心正在创造新的材料,这种材料建立在精心构建的材料内部的相反但微妙平衡的趋势和内部压力的基础上,并对其进行控制,以创造新的物质相并产生新的磁性。中心研究人员创造的单原子厚度材料的特征是通过将选定的原子以受控图案添加到材料表面来调整的,这些受控图案产生了引人注目的一维界面,其性质正在探索中。该中心在利用电子的磁性来传输磁性信息方面处于领先地位,使用的是基于热流和磁性电子阵列的相干运动的创新方法。该中心正在使用创新的方法,以确保其科学工作受益于妇女和代表性不足群体的贡献。年轻科学家的培训和教育被整合到该中心的科学研究中,以提高其招聘、留住和教授不同本科生、研究生和博士后研究人员的能力。*技术摘要*该中心正在创造新材料,以调节电子电荷产生的相互作用和电子自旋及其运动之间的微妙相互作用,以实现拓扑相、量子相变和新的磁性。这种调整将通过使用更重的元素来实现,在这些元素中,自旋与电子运动相互作用强烈,并将利用对材料的化学、结构和邻近材料施加的内部压力的修改。该中心还在创造新的单原子厚度的2D材料,这些材料由较重的原子组成,可以通过将原子共价附着在层的表面来调节电子性质,从而实现新的电子相和自旋物理。这些薄片的精细控制的空间图案创造了新的1D界面的令人兴奋的可能性。该中心将通过研究这些电流通过磁性受到空间调制的材料的行为,进入非线性区域,在该区域中,自旋的特征性质取决于自旋的驱动程度,从而开辟了自旋传输的新前沿。这种非线性响应可以使自旋输运科学超越扩散的自旋流,从而为下一代自旋电子学的自旋操纵和控制提供新的方法。由中心教员根据他们的研究主题创建的本科生实验室有助于为下一代科学做准备。中心教师是新设立的外部资助的硕士到博士少数族裔桥梁项目的参与者,该项目增加了合格教师候选人的人数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

P. Chris Hammel其他文献

Seeing single spins
看到单个自旋
  • DOI:
    10.1038/430300a
  • 发表时间:
    2004-07-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    P. Chris Hammel
  • 通讯作者:
    P. Chris Hammel
Design of a variable temperature scanning force microscope.
变温扫描力显微镜的设计。
  • DOI:
    10.1063/1.3212561
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Evgeny Nazaretski;K. Graham;J. Thompson;J. A. Wright;D. Pelekhov;P. Chris Hammel;R. Movshovich
  • 通讯作者:
    R. Movshovich
Nanoscale MRI
纳米级磁共振成像
  • DOI:
    10.1038/nnano.2015.7
  • 发表时间:
    2015-02-05
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Vidya Praveen Bhallamudi;P. Chris Hammel
  • 通讯作者:
    P. Chris Hammel
The role of diffusion in ferritin-induced relaxation enhancement of protons
  • DOI:
    10.1016/j.jmr.2012.02.005
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael A. Boss;P. Chris Hammel
  • 通讯作者:
    P. Chris Hammel
Seeing single spins
看到单个自旋
  • DOI:
    10.1038/430300a
  • 发表时间:
    2004-07-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    P. Chris Hammel
  • 通讯作者:
    P. Chris Hammel

P. Chris Hammel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('P. Chris Hammel', 18)}}的其他基金

MRI: Acquisition of High Field Physical Properties Measurement System with Cryogenic AFM/MFM
MRI:使用低温 AFM/MFM 获取高场物理特性测量系统
  • 批准号:
    1040296
  • 财政年份:
    2010
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Standard Grant
Center for Emergent Materials
新兴材料中心
  • 批准号:
    0820414
  • 财政年份:
    2008
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Cooperative Agreement
Materials World Network: Scanned Probe Studies of FMR Driven Spin Injection in Individual Fe-filled Carbon Nanotubes
材料世界网络:单个铁填充碳纳米管中 FMR 驱动的自旋注入的扫描探针研究
  • 批准号:
    0807093
  • 财政年份:
    2008
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Continuing Grant
Magnetic Resonance Force Microscopy for Characterization and Read-out
用于表征和读出的磁共振力显微镜
  • 批准号:
    0323783
  • 财政年份:
    2003
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Standard Grant

相似国自然基金

推广的Hubbard模型中的emergent现象研究
  • 批准号:
    11474061
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
关于Emergent宇宙的相关研究
  • 批准号:
    11175093
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Continuing Grant
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative construction of emergent grammar in Japanese university English language learning tasks: From graphic materials to spoken and written production
日本大学英语学习任务中生成语法的协同构建:从图形材料到口语和书面表达
  • 批准号:
    22K00692
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of emergent inductor and capacitor based on topological materials science
基于拓扑材料科学的新兴电感电容理论
  • 批准号:
    22K03538
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218382
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Standard Grant
Recent Developments on the Properties of Emergent Layered 2D Quantum Magnetic Materials and Heterostructures
新兴层状二维量子磁性材料和异质结构性能的最新进展
  • 批准号:
    2211763
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
  • 批准号:
    2218119
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Standard Grant
Emergent electronic structure and optical properties in two-dimensional materials
二维材料中的新兴电子结构和光学特性
  • 批准号:
    RGPIN-2018-04596
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
  • 批准号:
    RGPIN-2017-05470
  • 财政年份:
    2022
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
  • 批准号:
    RGPIN-2017-05470
  • 财政年份:
    2021
  • 资助金额:
    $ 1791.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了