EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
基本信息
- 批准号:2218382
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) will support fundamental research aimed at developing novel materials composed of stimuli-responsive filaments. The long-term desired behavior of these materials is inspired by the behavior of 1-cm-long California blackworms (Lumbriculus variegatus, Annelida: Clitellata: Lumbriculidae), a fascinating organism that collectively self-assembles to form functional worm blobs. The three-dimensional, soft, and tangled blob behaves as a living material that responds to environmental stresses through dynamic transformations of the blob’s morphology. The specific goals of this EAGER project are two-fold: to conduct biophysical experiments and mathematical analysis on living worms, and to synthesize soft, flexible, filament-like structures in polymer solutions. The behavior of both biological and synthetic systems will be studied at the level of individual filaments, pairs of twisted filaments, and collections of interacting structures. Understanding the properties and movements of these types of filaments has direct implications for creating novel materials, flexible robots, and objects that are pre-programmed to perform useful functions in response to external stimuli such as light, heat, or chemical reagents. The research team will include students from diverse disciplines and under-represented groups, thus adding powerful educational impact to the project and enriching its societal and human impact. This EAGER project will synthesize worm-inspired pre-programmed filamentous structures in polymer solutions capable of exhibiting tangling and untangling dynamics in a triggered fashion. While physically entangled filament-like structures are of great interest at both the molecular and macroscopic size scales, the interactions of structures of intermediate size, termed mesoscale, are not well understood. This project seeks to identify the chemistry, architectures, and most useful stimuli that enable collective systems of mesoscale polymers (MSPs) to readily tangle and untangle on command. Rudimentary segmental actuation of filamentous MSPs has been demonstrated by the research team. However, achieving intricate knotting and unknotting of collective filamentous structures remains a challenge. Here, chiral, twisting, and braiding mesoscale polymer structures will be synthesized using photochemical and fluid-induced methods. These efforts will be guided by fundamental research on the mechanics of knotting and unknotting in the living system. Together, these efforts could bring on a leap in materials synthesis while uncovering new foundational capabilities in the synthetic design of complex interacting filamentous structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项早期概念探索性研究补助金 (EAGER) 将支持旨在开发由刺激响应丝组成的新型材料的基础研究。这些材料的长期预期行为受到 1 厘米长的加州黑虫(Lumbriculus variegatus,环节动物:Clitellata: Lumbriculidae)行为的启发,这是一种迷人的生物体,可以集体自组装形成功能性蠕虫团。 这种三维、柔软且纠缠在一起的斑点就像一种活体材料,通过斑点形态的动态转变来响应环境压力。这个EAGER项目的具体目标有两个:对活体蠕虫进行生物物理实验和数学分析,以及在聚合物溶液中合成柔软、灵活的丝状结构。生物和合成系统的行为将在单个细丝、成对的扭曲细丝和相互作用结构的集合的水平上进行研究。了解这些类型的细丝的特性和运动对于创造新型材料、灵活的机器人和预先编程的物体具有直接的意义,这些物体可以响应光、热或化学试剂等外部刺激来执行有用的功能。 研究团队将包括来自不同学科和代表性不足群体的学生,从而为该项目增添强大的教育影响,并丰富其社会和人类影响。这个 EAGER 项目将在聚合物溶液中合成受蠕虫启发的预编程丝状结构,能够以触发方式表现出缠结和解开动力学。 虽然物理缠结的丝状结构在分子和宏观尺寸尺度上都引起了人们的极大兴趣,但中等尺寸(称为介观尺度)结构的相互作用尚不清楚。该项目旨在确定化学、结构和最有用的刺激,使介观聚合物(MSP)的集体系统能够根据命令轻松地缠结和解开。研究小组已经证明了丝状 MSP 的基本分段驱动。然而,实现集体丝状结构的复杂打结和解结仍然是一个挑战。在这里,将使用光化学和流体诱导方法合成手性、扭曲和编织介观聚合物结构。这些努力将以生命系统中打结和解开机制的基础研究为指导。总之,这些努力可以带来材料合成的飞跃,同时揭示复杂相互作用丝状结构合成设计的新基础能力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amorphous entangled active matter
非晶态缠结活性物质
- DOI:10.1039/d2sm01573k
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Savoie, William;Tuazon, Harry;Tiwari, Ishant;Bhamla, M. Saad;Goldman, Daniel I.
- 通讯作者:Goldman, Daniel I.
Collecting–Gathering Biophysics of the Blackworm Lumbriculus variegatus
收集 — 收集黑虫 Lumbriculus variegatus 的生物物理学
- DOI:10.1093/icb/icad080
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Tuazon, Harry;Nguyen, Chantal;Kaufman, Emily;Tiwari, Ishant;Bermudez, Jessica;Chudasama, Darshan;Peleg, Orit;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
Ultrafast reversible self-assembly of living tangled matter
活体缠结物质的超快可逆自组装
- DOI:10.1126/science.ade7759
- 发表时间:2023
- 期刊:
- 影响因子:56.9
- 作者:Patil, Vishal P.;Tuazon, Harry;Kaufman, Emily;Chakrabortty, Tuhin;Qin, David;Dunkel, Jörn;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saad Bhamla其他文献
<em>De novo</em> ATP-independent contractile protein network
- DOI:
10.1016/j.bpj.2023.11.3261 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Xiangting Lei;Carlos Floyd;Tuhin Charkbortty;Scott M. Coyle;Jerry E. Honts;Aaron Dinner;Suriyanarayanan Vaikuntanathan;Saad Bhamla - 通讯作者:
Saad Bhamla
Epineuston vortex recapture enhances thrust in tiny water skaters
Epineuston 涡流重新捕获增强了小型滑水者的推力
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pankaj Rohilla;Johnathan N. O’Neil;Chandan Bose;Victor M. Ortega;Daehyun Choi;Saad Bhamla - 通讯作者:
Saad Bhamla
Saad Bhamla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saad Bhamla', 18)}}的其他基金
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
- 批准号:
2243698 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
IRES Track1: In-situ Jungle Biomechanics Laboratory (JBL) Research Experience in the Amazon Rainforest
IRES Track1:亚马逊雨林原位丛林生物力学实验室 (JBL) 研究经验
- 批准号:
2246236 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Tools4Cells: EAGER: A Molecular Pursuit for the Engram: Microfluidic temporal transcriptomics for single cell learning
Tools4Cells:EAGER:对印迹的分子追求:用于单细胞学习的微流控时间转录组学
- 批准号:
2337788 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
- 批准号:
2313724 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
I-Corps: Delivery system for gene-based medicines
I-Corps:基因药物输送系统
- 批准号:
2120291 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Fast, Furious and Fantastic Beasts: Integrative principles, biomechanics and physical limits of impulsive motion in ultrafast organisms
职业:《速度与激情》和《神奇动物在哪里》:超快生物体中脉冲运动的综合原理、生物力学和物理极限
- 批准号:
1941933 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: CYBORG cells: Modular integration of synthetic organelles into living cells
合作研究:CYBORG 细胞:将合成细胞器模块化整合到活细胞中
- 批准号:
1935262 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fundamental principles, limits, and function of ultrafast motion in single cell organisms
单细胞生物超快运动的基本原理、限制和功能
- 批准号:
1817334 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




