Analyses of Overly Dispersed Covariance within Latent Structures and Applications in Psychological and Behavioral Research

潜在结构中过度分散协方差的分析及其在心理和行为研究中的应用

基本信息

  • 批准号:
    1424875
  • 负责人:
  • 金额:
    $ 27.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This research project will investigate models for covariation of multiple variables over time and apply the various models to analyze data from the social and behavioral sciences. Understanding covariation often is a first step in the study of causation and possible mechanisms that lead to specific outcomes. The study of covariation over time may reveal interesting and important patterns within a system of interconnecting variables. In economics and finance, for example, studying the change in patterns of covariation of market data has important implications for asset management and portfolio diversification. Stock-market indexes across the world often are correlated, but the correlations during bear markets and crisis periods tend to be much higher than during normal times. Covariation in cognitive domains, such as memory, reasoning, and speed of processing information may be used to assess early cognitive impairment. For example, divergence in performance across domains within the overall trend of general cognitive decline due to age could indicate problems. The project will develop tools for the research community to facilitate the interpretation of covariation in data. The project also will train graduate students and postdoctoral researchers.This project will examine different approaches for studying overly dispersed covariation in the context of modeling with latent structures. Overly dispersed covariation refers to sources of variation that drive the association between variables but are not captured by regular latent structures. The project will use state-of-the-art tools from statistics and machine learning to examine data from the social and behavioral sciences. A unique intellectual contribution of the project will be the adaptation of these toolsets to social and behavioral science data that often emphasize multiple outcome variables rather than multiple predictor variables as in the case of statistics and machine learning. The project will be organized by several exemplary applications including (1) response consistency in attitudinal survey, (2) patterns of cognitive impairment, (3) dynamics of change in forming friendship among children, and (4) cognitively demanding daily activities in older adults. The applications are broad in their respective content. While they illustrate different and specific strategies for handling overly dispersed covariation, they serve as prototypical examples for further development of similar applications in other fields of study.
该研究项目将调查多个变量随时间的协变模型,并应用各种模型来分析社会和行为科学的数据。 理解协变往往是研究因果关系和导致特定结果的可能机制的第一步。 随着时间的推移,协变的研究可能会揭示有趣的和重要的模式内的相互关联的变量系统。 例如,在经济学和金融学中,研究市场数据协变模式的变化对资产管理和投资组合多样化具有重要意义。 世界各地的股票市场指数通常是相关的,但熊市和危机期间的相关性往往比正常时期高得多。 认知领域的共变,如记忆、推理和处理信息的速度,可用于评估早期认知障碍。 例如,在由于年龄而导致的一般认知能力下降的总体趋势中,各领域的表现差异可能表明存在问题。 该项目将为研究界开发工具,以促进对数据协变的解释。 该项目还将培养研究生和博士后研究人员。该项目将研究在潜在结构建模的背景下研究过度分散协变的不同方法。 过度分散的协变是指驱动变量之间的关联,但不被规则的潜在结构捕获的变化来源。 该项目将使用统计学和机器学习的最先进工具来检查来自社会和行为科学的数据。 该项目的一个独特的智力贡献将是这些工具集适应社会和行为科学数据,这些数据通常强调多个结果变量,而不是统计和机器学习中的多个预测变量。 该项目将由几个示例性应用程序组织,包括(1)态度调查中的反应一致性,(2)认知障碍的模式,(3)儿童之间形成友谊的变化动态,以及(4)老年人的认知需求日常活动。 这些应用在各自的内容中是广泛的。 虽然它们说明了不同的和具体的策略来处理过于分散的协变,他们作为原型的例子,在其他领域的研究类似的应用程序的进一步发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Ip其他文献

Editorial, Spring 2020
  • DOI:
    10.1007/s11336-020-09695-5
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Matthias von Davier;Edward Ip
  • 通讯作者:
    Edward Ip
多主体連携による政策形成における環境NPOの役割:省エネラベルの制度化を事例として
环保非营利组织在多部门合作政策制定中的作用:以节能标识制度化为例
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kohei Ichikawa;Edward Ip;Katsutoshi Yada;Takashi Washio;Jota Ishikawa;豊田陽介・平岡俊一・山添史郎・野田浩資
  • 通讯作者:
    豊田陽介・平岡俊一・山添史郎・野田浩資
Characterizing Treatment Preference “Phenotypes” Among Patients With Symptomatic Peripheral Artery Disease to Support Identification of Concordant Treatment and Communication Strategies
  • DOI:
    10.1016/j.jvs.2020.04.144
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew A. Corriere;Ryan Barnard;Santiago Saldana;Raul J. Guzman;Derrick Boone;Douglas Easterling;Gregory Burke;Edward Ip
  • 通讯作者:
    Edward Ip
Correction to: How do patients interpret and respond to a single‑item global indicator of cancer treatment tolerability?
  • DOI:
    10.1007/s00520-023-07953-7
  • 发表时间:
    2023-07-24
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    John Devin Peipert;Sara Shaunfield;Karen Kaiser;Patricia I. Moreno;Rina S. Fox;Sheetal Kircher;Nisha Mohindra;Edward Ip;Fengmin Zhao;Lynne Wagner;David Cella
  • 通讯作者:
    David Cella
Application of DNA Sequence Alignment Algorithm to Classification of Shopping Paths through a SupermarketLarge-Scale Customized Models for Advertisers
DNA序列比对算法应用于超市购物路径分类广告商大规模定制模型

Edward Ip的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Ip', 18)}}的其他基金

Partially Ordered Item Response Modeling for Longitudinal and Multivariate Data
纵向和多元数据的偏序项目响应建模
  • 批准号:
    2120174
  • 财政年份:
    2021
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Item Response Models for Partially Ordered Data
部分有序数据的项目响应模型
  • 批准号:
    1229549
  • 财政年份:
    2012
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Solving the Interpretation Versus Misspecification Dilemma in Psychological, Social, and Behavioral Measurements
解决心理、社会和行为测量中的解释与错误指定困境
  • 批准号:
    0719354
  • 财政年份:
    2007
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: Temporal Configuration Analysis for Extracting Qualitative Information from Multi-Wave, Multi-Dimensional Data
合作研究:从多波、多维数据中提取定性信息的时间配置分析
  • 批准号:
    0820445
  • 财政年份:
    2007
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Temporal Configuration Analysis for Extracting Qualitative Information from Multi-Wave, Multi-Dimensional Data
合作研究:从多波、多维数据中提取定性信息的时间配置分析
  • 批准号:
    0532296
  • 财政年份:
    2005
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Temporal Configuration Analysis for Extracting Qualitative Information from Multi-Wave, Multi-Dimensional Data
合作研究:从多波、多维数据中提取定性信息的时间配置分析
  • 批准号:
    0532185
  • 财政年份:
    2005
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant
Extending Locally Dependent Item Response Models for Analyzing Psychological and Social Surveys
扩展用于分析心理和社会调查的局部相关项目响应模型
  • 批准号:
    0417349
  • 财政年份:
    2004
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Standard Grant

相似海外基金

Study on mechanism causing overly robust and complicated cyber-security system
网络安全系统过于稳健复杂的机理研究
  • 批准号:
    19K01895
  • 财政年份:
    2019
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The growing crisis of overly big babies: Comparing prevalence, outcomes and risk factors in midwifery v physician care
日益严重的过大婴儿危机:比较助产士与医生护理的患病率、结果和风险因素
  • 批准号:
    376218
  • 财政年份:
    2017
  • 资助金额:
    $ 27.91万
  • 项目类别:
    Studentship Programs
CLEVELANDERS IN MOTION: CREATING A HEALTHIER COMMUNITY BY CONVERTING OVERLY-WIDE AND UNDER-UTILIZED STREETS IN CLEVELAND, OHIO INTO SAFE AND INVITING PLACES TO WALK, RUN AND BICYCLE
克利夫兰人在行动:通过将俄亥俄州克利夫兰市过宽且未充分利用的街道改造为安全街道并邀请人们步行、跑步和骑自行车,创建一个更健康的社区
  • 批准号:
    8899971
  • 财政年份:
    2014
  • 资助金额:
    $ 27.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了