Item Response Models for Partially Ordered Data
部分有序数据的项目响应模型
基本信息
- 批准号:1229549
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will develop advanced analytic tools for analyzing multiple partially orderedresponses. While partially ordered set (poset) data are prevalent in many branches of the social and behavioral sciences, their presence has been under-reported and their importance underrecognized. A simple example is response categories Agree, Neutral, Disagree, and Don't Know, of which the first three can be ordered and the last forms a category of its own. The project will build upon previous work in poset and extend the methods to multiple poset responses. The methods will be extensions of models based on the item response theory (IRT). Specifically, the project will adapt the graded, nominal, and sequential response IRT models - tools that are able to handle multiple responses and mixed-response types - for partially ordered responses. Simulation studies will be used to establish the validity of the methodology.Very few analytic methods exist for analyzing data in which some of the information is ordered and some is not. Because of the lack of analytic tools, this broad class of data types is often unnecessarily being "forced" into other data types - e.g., through summarization or artificially collapsing response categories - so they can be analyzed by existing ordinal or nominal data methods. Subtle and potentially important information is often lost through such data reduction. While this problem was recognized more than two decades ago as having a negative impact on the development of theory for psychological and educational measurement, little progress has actually been made since then. This research will directly address this gap in measurement. Because item response theory (IRT) has been widely used and adopted in various fields - education, social and psychological sciences, health measurement, and business marketing research - the development of methods for analyzing this data type in IRT has the potential to provide more precise measurement tools for researchers and practitioners in a broad range of areas of study.
该项目将开发先进的分析工具,用于分析多个部分排序的答复。虽然偏序集(偏序集)数据在社会和行为科学的许多分支中普遍存在,但它们的存在一直没有得到充分的报道,其重要性也没有得到充分认识。一个简单的例子是响应类别同意、中立、不同意和不知道,其中前三个类别可以排序,最后一个类别形成自己的类别。该项目将建立在POSET之前的工作基础上,并将这些方法扩展到多个POSET响应。这些方法是基于项目反应理论(IRT)的模型的扩展。具体地说,该项目将调整分级、名义和顺序响应IRT模型--能够处理多个响应和混合响应类型的工具--以适应部分排序的响应。模拟研究将被用来建立该方法的有效性。分析数据的分析方法很少,其中一些信息是有序的,而另一些则是无序的。由于缺乏分析工具,这一大类数据类型经常不必要地被“强迫”为其他数据类型--例如,通过总结或人为地折叠答复类别--以便它们可以通过现有的顺序或名义数据方法进行分析。在这样的数据简化过程中,微妙的和潜在的重要信息往往会丢失。虽然这个问题在二十多年前就被认为对心理和教育测量理论的发展产生了负面影响,但从那时起实际上几乎没有取得什么进展。这项研究将直接解决测量中的这一差距。由于项目反应理论(IRT)在教育、社会和心理科学、健康测量和商业营销研究等各个领域都得到了广泛的应用和采用,因此在IRT中分析这一数据类型的方法的发展有可能为研究人员和从业者在广泛的研究领域提供更精确的测量工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Ip其他文献
Editorial, Spring 2020
- DOI:
10.1007/s11336-020-09695-5 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:3.100
- 作者:
Matthias von Davier;Edward Ip - 通讯作者:
Edward Ip
多主体連携による政策形成における環境NPOの役割:省エネラベルの制度化を事例として
环保非营利组织在多部门合作政策制定中的作用:以节能标识制度化为例
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Kohei Ichikawa;Edward Ip;Katsutoshi Yada;Takashi Washio;Jota Ishikawa;豊田陽介・平岡俊一・山添史郎・野田浩資 - 通讯作者:
豊田陽介・平岡俊一・山添史郎・野田浩資
Characterizing Treatment Preference “Phenotypes” Among Patients With Symptomatic Peripheral Artery Disease to Support Identification of Concordant Treatment and Communication Strategies
- DOI:
10.1016/j.jvs.2020.04.144 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Matthew A. Corriere;Ryan Barnard;Santiago Saldana;Raul J. Guzman;Derrick Boone;Douglas Easterling;Gregory Burke;Edward Ip - 通讯作者:
Edward Ip
Correction to: How do patients interpret and respond to a single‑item global indicator of cancer treatment tolerability?
- DOI:
10.1007/s00520-023-07953-7 - 发表时间:
2023-07-24 - 期刊:
- 影响因子:3.000
- 作者:
John Devin Peipert;Sara Shaunfield;Karen Kaiser;Patricia I. Moreno;Rina S. Fox;Sheetal Kircher;Nisha Mohindra;Edward Ip;Fengmin Zhao;Lynne Wagner;David Cella - 通讯作者:
David Cella
Application of DNA Sequence Alignment Algorithm to Classification of Shopping Paths through a SupermarketLarge-Scale Customized Models for Advertisers
DNA序列比对算法应用于超市购物路径分类广告商大规模定制模型
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Kohei Ichikawa;Edward Ip;Katsutoshi Yada;Takashi Washio - 通讯作者:
Takashi Washio
Edward Ip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Ip', 18)}}的其他基金
Partially Ordered Item Response Modeling for Longitudinal and Multivariate Data
纵向和多元数据的偏序项目响应建模
- 批准号:
2120174 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Analyses of Overly Dispersed Covariance within Latent Structures and Applications in Psychological and Behavioral Research
潜在结构中过度分散协方差的分析及其在心理和行为研究中的应用
- 批准号:
1424875 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Solving the Interpretation Versus Misspecification Dilemma in Psychological, Social, and Behavioral Measurements
解决心理、社会和行为测量中的解释与错误指定困境
- 批准号:
0719354 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Temporal Configuration Analysis for Extracting Qualitative Information from Multi-Wave, Multi-Dimensional Data
合作研究:从多波、多维数据中提取定性信息的时间配置分析
- 批准号:
0820445 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Temporal Configuration Analysis for Extracting Qualitative Information from Multi-Wave, Multi-Dimensional Data
合作研究:从多波、多维数据中提取定性信息的时间配置分析
- 批准号:
0532296 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Temporal Configuration Analysis for Extracting Qualitative Information from Multi-Wave, Multi-Dimensional Data
合作研究:从多波、多维数据中提取定性信息的时间配置分析
- 批准号:
0532185 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Extending Locally Dependent Item Response Models for Analyzing Psychological and Social Surveys
扩展用于分析心理和社会调查的局部相关项目响应模型
- 批准号:
0417349 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
生长素响应因子(Auxin Response Factors)在拟南芥雄配子发育中的功能研究
- 批准号:31970520
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
新型GhDRP1(Drought Response Protein1) 调控棉花应答干旱的分子网络解析及育种利用评价
- 批准号:31871668
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
秀丽隐杆线虫ASI神经元off-response的环路与分子机制
- 批准号:31600856
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Generative Item, Response, and Feedback Models in Assessment and Learning
职业:评估和学习中的生成项目、响应和反馈模型
- 批准号:
2237676 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
DGECR-2018-00083 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Discovery Launch Supplement
Development of mixed distribution item response models for the analysis of cross-classified multirater data and their application in teaching evaluation research (MixIRT-CCM)
开发用于分析跨分类多评估者数据的混合分布项目响应模型及其在教学评估研究中的应用(MixIRT-CCM)
- 批准号:
405463675 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Research Grants
Compatibility of content coverage and one-dimensional statistical modelling by item response theory models with local item dependencies and an application in personality psychology
内容覆盖范围和一维统计建模与局部项目依赖性的项目反应理论模型的兼容性及其在人格心理学中的应用
- 批准号:
319938237 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Research Grants
Score-Based Tests of Measurement Bias in Explanatory Item Response Models
解释性项目响应模型中基于分数的测量偏差测试
- 批准号:
1460719 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant