NRI: Peer-to-Peer Human-Robot Coalitions
NRI:点对点人类机器人联盟
基本信息
- 批准号:1427004
- 负责人:
- 金额:$ 52.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims to create large-scale teams of human and robot peers that operate side-by-side in the same physical space, with each human and robot performing physical actions based upon their own skills and capabilities. The intent is to generate an interaction style that is not based on direct commands and controls from humans to robots, but rather on the idea that robots can implicitly infer the intent of human teammates through passive observation, and then take appropriate actions in the current context. In this interaction, humans perform tasks in a very natural manner, as he/she would when working with a human teammate, thus bypassing the difficulty of cognitive overload that occurs when humans are required to explicitly supervise the actions of several robot team members. This research can revolutionize how humans and robots work together in applications such as search and rescue, firefighting, security, defense, light construction, manufacturing, home assistance, and healthcare.This research focuses on two key challenges: (1) how robots can determine humans' current goals, intents, and activities via sensor observation only, and (2) how robots can respond appropriately to help humans with the ongoing task, consistent with the inferred human intent. Input to the robot system is a set of learned models, along with color and depth sensing. Models are learned using novel features for human perception and representation, including Depth of Interest features, 4-dimensional local spatio-temporal features, adaptive human-centered features, and simplex-based orientation descriptors. Learning techniques make use of novel maximum temporal certainty models for sequential activity recognition, and conditional random fields for environmental monitoring. Robot activity selection is achieved via a novel risk-aware cognitive model. The outcome of this research will be new software methodologies enabling robot cognition, learning, sensing, perception, and action selection for peer-to-peer human-robot teaming.
这项研究旨在创建大规模的人类和机器人团队,在同一个物理空间中并肩作战,每个人和机器人都根据自己的技能和能力进行物理动作。其目的是生成一种交互风格,这种风格不是基于人类对机器人的直接命令和控制,而是基于机器人可以通过被动观察隐含地推断人类队友的意图,然后在当前上下文中采取适当的行动的想法。在这种交互中,人类以一种非常自然的方式执行任务,就像他/她在与人类队友合作时一样,从而绕过了当人类被要求明确监督几个机器人团队成员的行动时发生的认知过载的困难。这项研究可以彻底改变人类和机器人在搜索和救援、消防、安全、国防、轻型建筑、制造、家庭辅助和医疗保健等应用中的协同工作方式。本研究主要关注两个关键挑战:(1)机器人如何仅通过传感器观察来确定人类当前的目标、意图和活动;(2)机器人如何做出适当的反应,帮助人类完成正在进行的任务,与推断出的人类意图保持一致。机器人系统的输入是一组学习模型,以及颜色和深度感知。模型是利用人类感知和表征的新特征来学习的,包括兴趣深度特征、四维局部时空特征、自适应以人为中心的特征和基于simplexs的方向描述符。学习技术利用新的最大时间确定性模型进行序列活动识别,并利用条件随机场进行环境监测。机器人的活动选择是通过一种新颖的风险感知认知模型实现的。这项研究的结果将是新的软件方法,使机器人的认知,学习,传感,感知和行动选择点对点的人-机器人团队。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynne Parker其他文献
Lynne Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynne Parker', 18)}}的其他基金
RI-Small: Reconfigurable and Adaptable Multi-Robot Coalitions
RI-Small:可重构和适应性强的多机器人联盟
- 批准号:
0812117 - 财政年份:2008
- 资助金额:
$ 52.13万 - 项目类别:
Standard Grant
SGER: Constructivist Learning using ASyMTRe in Multi-Robot Teams
SGER:在多机器人团队中使用 ASyMTRe 的建构主义学习
- 批准号:
0631958 - 财政年份:2006
- 资助金额:
$ 52.13万 - 项目类别:
Standard Grant
相似国自然基金
基于语义映射Peer数据管理系统的关键技术研究
- 批准号:60503038
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Peer-to-Peer环境下查询处理研究
- 批准号:60373019
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337253 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Standard Grant
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Studentship
Peer to Peer多相水素エネルギーシステムに関する連成科学的アプローチ
点对点多相氢能系统的耦合科学方法
- 批准号:
23K28282 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Partnerships for Enhancing ERI Research (PEER)
加强 ERI 研究的伙伴关系 (PEER)
- 批准号:
2347159 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Standard Grant
Feedback Literacy and AI Ethics: Leveraging Auto-Peer for Productive Interaction with Generative AI Tools in L2 Writing Education in Japan
反馈素养和人工智能道德:在日本二语写作教育中利用 Auto-Peer 与生成式人工智能工具进行富有成效的互动
- 批准号:
24K04103 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Utilizing Interactive Videos to Assist Self and Peer Assessment of Students' Speaking
利用互动视频辅助学生口语自评和互评
- 批准号:
24K16138 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Peer promoted LunchChat app at university: connecting students at mealtimes to prevent/reduce loneliness
大学里同行推广的 LunchChat 应用程序:在用餐时间联系学生以防止/减少孤独感
- 批准号:
MR/Z503587/1 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Research Grant
HSI Implementation and Evaluation Project: Establishing a Peer-Led Team Learning Program at the College of Science and Engineering
HSI 实施和评估项目:在科学与工程学院建立同伴主导的团队学习计划
- 批准号:
2345162 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Standard Grant
Implementation of community-based health checks and peer-to-peer support to promote functional ability for older people living in rural Zimbabwe
实施基于社区的健康检查和同伴支持,以提高津巴布韦农村老年人的功能能力
- 批准号:
MR/Y019520/1 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Research Grant
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337252 - 财政年份:2024
- 资助金额:
$ 52.13万 - 项目类别:
Standard Grant














{{item.name}}会员




