NRI: Collaborative Research: Human-Supervised Perception and Grasping in Clutter
NRI:协作研究:人类监督的杂乱中的感知和抓取
基本信息
- 批准号:1427081
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the basic building blocks in semi-autonomous manipulation is the ability for a robot to grasp an object that a human operator indicates. There are many tasks where the natural way for a human and robot to work together is for the human to point out the approximate locations of objects to be grasped and for the robot to generate the precise motions necessary to achieve the grasp. This core "auto-grasp" functionality is critical to providing assistive manipulation for the disabled and elderly, as well as for a variety of military, police, space, or underwater applications. But implementing auto-grasp capability can be challenging in situations where the environment is cluttered, or when it is difficult to determine the grasp intention of the human. In this collaborative project that combines expertise from two institutions, the PIs will tackle situations where it is necessary for the robot to actively explore or "interrogate" the environment in order to figure out what the human intends to grasp and how the robot should do it. To these ends, the PIs will investigate a modified approach to planning under uncertainty known as belief space planning. Belief space planning is well-suited to active localization for grasping, because it is a single framework in which the algorithm can reason about perception-oriented and goal-orientation parts of the task. The PIs will use belief space planning to localize graspable geometries in the environment, known as grasp affordances, in a region indicated by the user. They will also explore different ways in which a human can interact with the system in order to control the grasping. The application focus of the work will be in assistive manipulation, where a person who is elderly or disabled operates an assistive robot arm mounted on an electric wheelchair or scooter. User studies will determine the best methods for the target population to operate the system. The project will contribute to the opportunities available for undergraduates and high school students in the PIs' institutions, and it will also be integrated as appropriate into the curricula of the courses they teach.This research contains two key innovations that the PIs expect will make robot grasping more robust. The first is to incorporate ideas from belief space planning into the reach and grasp planning process. Because belief space planning can reason about how the robot's own "state of information" is expected to change in the future, it is capable of producing plans that acquire task-relevant information in the course of performing a task. The second innovation is a new approach to perception-for-grasping that localizes grasp affordance geometries in the neighborhoods of objects of potential interest. Not only is this grasp affordance approach helpful to the belief space planner, but the PIs' preliminary work indicates that this approach can be accurate and very fast (10Hz). Finally, the connection between the user interface and uncertainty in the location of the grasp target will also be explored, the plan being to model human behavior as an uncertain system where hidden variables describe user intention.
半自主操作的基本构件之一是机器人抓取人类操作员指示的对象的能力。在许多任务中,人类和机器人合作的自然方式是人类指出要抓取的物体的大致位置,并由机器人产生实现抓取所需的精确运动。这种核心的“自动抓取”功能对于为残疾人和老年人以及各种军事、警察、空间或水下应用提供辅助操作至关重要。但是,在环境混乱的情况下,或者当很难确定人类的抓取意图时,实现自动抓取能力可能是具有挑战性的。在这个将两个机构的专业知识结合在一起的合作项目中,PI将处理机器人必须积极探索或“审问”环境的情况,以便弄清楚人类打算掌握什么以及机器人应该如何做。为此,PI将研究一种在不确定情况下改进的规划方法,称为信念空间规划。信念空间规划非常适合于主动定位抓取,因为它是一个单一的框架,算法可以在其中对任务的面向感知和面向目标的部分进行推理。PI将使用信念空间规划来在用户指示的区域中定位环境中的可抓握几何,称为抓握启示。他们还将探索人类与系统互动以控制抓取的不同方式。这项工作的应用重点将是辅助操纵,即老年人或残疾人操作安装在电动轮椅或滑板车上的辅助机械臂。用户研究将确定目标人群操作该系统的最佳方法。该项目将有助于为大学生和高中生提供在私人投资机构的机会,它也将被适当地整合到他们所教授的课程的课程中。这项研究包含两个关键创新,个人投资机构预计将使机器人抓取更加健壮。第一个是将信念空间规划的想法融入到REACH和把握规划过程中。由于信念空间规划可以推断机器人自身的信息状态在未来预计将如何变化,它能够产生在执行任务过程中获取与任务相关的信息的计划。第二个创新是知觉换抓取的新方法,它将抓取能力几何定位在潜在感兴趣对象的邻近区域。这种抓取启示方法不仅有助于信念空间规划者,而且PI的初步工作表明,这种方法可以非常准确和快速(10赫兹)。最后,还将探索用户界面与抓取目标位置的不确定性之间的联系,计划将人类行为建模为其中隐藏变量描述用户意图的不确定系统。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pick and Place Without Geometric Object Models
无需几何对象模型即可拾取和放置
- DOI:10.1109/icra.2018.8460553
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Gualtieri, Marcus;Pas, Andreas ten;Platt, Robert
- 通讯作者:Platt, Robert
Online abstraction with MDP homomorphisms for Deep Learning
- DOI:
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Ondrej Biza;Robert W. Platt
- 通讯作者:Ondrej Biza;Robert W. Platt
Towards Assistive Robotic Pick and Place in Open World Environments
在开放世界环境中实现辅助机器人拾取和放置
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wang, Dian;Kohler, Colin;ten Pas, Andreas;Wilkinson, Alexander;Liu, Maozhi;Yanco, Holly;Platt, Robert
- 通讯作者:Platt, Robert
Deictic Image Mapping: An Abstraction For Learning Pose Invariant Manipulation Policies
指示图像映射:学习姿势不变操作策略的抽象
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Platt, Robert;Kohler, Colin;Gualtieri, Marcus
- 通讯作者:Gualtieri, Marcus
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Platt其他文献
The nature of essential hypertension.
原发性高血压的性质。
- DOI:
- 发表时间:
1959 - 期刊:
- 影响因子:0
- 作者:
Robert Platt - 通讯作者:
Robert Platt
Coarticulation in Markov Decision Processes
马尔可夫决策过程中的协同表达
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Khashayar Rohanimanesh;Robert Platt;S. Mahadevan;R. Grupen - 通讯作者:
R. Grupen
MIT Open Access Articles LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics
麻省理工学院开放获取文章 LQR-RRT*:基于自动导出的扩展启发式的最佳基于采样的运动规划
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alejandro Perez;Robert Platt;G. Konidaris;L. Kaelbling;Tomás Lozano - 通讯作者:
Tomás Lozano
Improving Grasp Skills Using Schema Structured Learning
使用模式结构化学习提高掌握技能
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Robert Platt;R. Grupen;A. Fagg - 通讯作者:
A. Fagg
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods
TRIPOD AI 声明:使用回归或机器学习方法报告临床预测模型的更新指南
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gary S. Collins;K. Moons;Paula Dhiman;Richard D. Riley;A. L. Beam;B. Calster;Marzyeh Ghassemi;Xiaoxuan Liu;Johannes B Reitsma;M. Smeden;A. Boulesteix;Jennifer Catherine Camaradou;L. Celi;S. Denaxas;A. Denniston;Ben Glocker;Robert M Golub;Hugh Harvey;Georg Heinze;Michael M Hoffman;A. Kengne;Emily Lam;Naomi Lee;Elizabeth W Loder;Lena Maier;B. Mateen;M. Mccradden;Lauren Oakden;Johan Ordish;Richard Parnell;Sherri Rose;Karandeep Singh;L. Wynants;P. Logullo;Abhishek Gupta;Adrian Barnett;Adrian Jonas;Agathe Truchot;Aiden Doherty;Alan Fraser;Alex Fowler;Alex Garaiman;Alistair Denniston;Amin Adibi;André Carrington;Andre Esteva;Andrew Althouse;Andrew Soltan;A. Appelt;Ari Ercole;Armando Bedoya;B. Vasey;B. Desiraju;Barbara Seeliger;B. Geerts;Beatrice Panico;Benjamin Fine;Benjamin Goldstein;B. Gravesteijn;Benjamin Wissel;B. Holzhauer;Boris Janssen;Boyi Guo;Brooke Levis;Catey Bunce;Charles Kahn;Chris Tomlinson;Christopher Kelly;Christopher Lovejoy;Clare McGenity;Conrad Harrison Constanza;Andaur Navarro;D. Nieboer;Dan Adler;Danial Bahudin;Daniel Stahl;Daniel Yoo;Danilo Bzdok;Darren Dahly;D. Treanor;David Higgins;David McClernon;David Pasquier;David Taylor;Declan O’Regan;Emily Bebbington;Erik Ranschaert;E. Kanoulas;Facundo Diaz;Felipe Kitamura;Flavio Clesio;Floor van Leeuwen;Frank Harrell;Frank Rademakers;G. Varoquaux;Garrett S Bullock;Gary Weissman;George Fowler;George Kostopoulos;Georgios Lyratzaopoulos;Gianluca Di;Gianluca Pellino;Girish Kulkarni;G. Zoccai;Glen Martin;Gregg Gascon;Harlan Krumholz;H. Sufriyana;Hongqiu Gu;H. Bogunović;Hui Jin;Ian Scott;Ijeoma Uchegbu;Indra Joshi;Irene M. Stratton;James Glasbey;Jamie Miles;Jamie Sergeant;Jan Roth;Jared Wohlgemut;Javier Carmona Sanz;J. Bibault;Jeremy Cohen;Ji Eun Park;Jie Ma;Joel Amoussou;John Pickering;J. Ensor;J. Flores;Joseph LeMoine;Joshua Bridge;Josip Car;Junfeng Wang;Keegan Korthauer;Kelly Reeve;L. Ación;Laura J. Bonnett;Lief Pagalan;L. Buturovic;L. Hooft;Maarten Luke Farrow;Van Smeden;Marianne Aznar;Mario Doria;Mark Gilthorpe;M. Sendak;M. Fabregate;M. Sperrin;Matthew Strother;Mattia Prosperi;Menelaos Konstantinidis;Merel Huisman;Michael O. Harhay;Miguel Angel Luque;M. Mansournia;Munya Dimairo;Musa Abdulkareem;M. Nagendran;Niels Peek;Nigam Shah;Nikolas Pontikos;N. Noor;Oilivier Groot;Páll Jónsson;Patrick Bossuyt;Patrick Lyons;Patrick Omoumi;Paul Tiffin;Peter Austin;Q. Noirhomme;Rachel Kuo;Ram Bajpal;Ravi Aggarwal;Richiardi Jonas;Robert Platt;Rohit Singla;Roi Anteby;Rupa Sakar;Safoora Masoumi;Sara Khalid;Saskia Haitjema;Seong Park;Shravya Shetty;Stacey Fisher;Stephanie Hicks;Susan Shelmerdine;Tammy Clifford;Tatyana Shamliyan;Teus Kappen;Tim Leiner;Tim Liu;Tim Ramsay;Toni Martinez;Uri Shalit;Valentijn de Jong;Valentyn Bezshapkin;V. Cheplygina;Victor Castro;V. Sounderajah;Vineet Kamal;V. Harish;Wim Weber;W. Amsterdam;Xioaxuan Liu;Zachary Cohen;Zakia Salod;Zane Perkins - 通讯作者:
Zane Perkins
Robert Platt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Platt', 18)}}的其他基金
FRR: Symmetric Policy Learning for Robotic Manipulation
FRR:机器人操作的对称策略学习
- 批准号:
2314182 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Manipulation Assistance for Activities of Daily Living in Everyday Environments
CHS:媒介:协作研究:日常环境中日常生活活动的操纵辅助
- 批准号:
1763878 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
CAREER: Robotic Manipulation Using Deep Deictic Reinforcement Learning
职业:使用深度指示强化学习的机器人操作
- 批准号:
1750649 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
S&AS: INT: COLLAB: Composable and Verifiable Design for Autonomous Humanoid Robots in Space Missions
S
- 批准号:
1724257 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
- 批准号:
1724191 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似海外基金
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
- 批准号:
2410255 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132936 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2133019 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
- 批准号:
2133075 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
- 批准号:
2132798 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
- 批准号:
2132847 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132937 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant