CAREER: Robotic Manipulation Using Deep Deictic Reinforcement Learning
职业:使用深度指示强化学习的机器人操作
基本信息
- 批准号:1750649
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As robot tasks and environments become more complex, it is getting too challenging to program every detail of the robot's behavior explicitly, by hand. An alternate approach is to learn behaviors through experience, a type of machine learning known as ``reinforcement learning'', where the robot learns through trial and error. Pure trial and error, however, is inefficient, which means it takes the robot a long time to learn. The goal of this project is to enable robots to focus attention on the parts of the environment that lead to effective learning and good generalization to new tasks. A result of this research is the ability of assistive robots in the home, such as an assistive wheelchair equipped with a robotic arm, to learn how to better help the infirm and people with disabilities.This project will develop a new approach to applying deep reinforcement learning (deep RL) to robotic manipulation problems by incorporating deictic representations. A deictic representation encodes state/action relative to a marker that the agent places in the environment. In this project, the marker is a 6-DOF reference frame, placed in a 3-D point cloud, or truncated signed distance function. The robot decides where to place the marker and how it should move relative to that marker by solving a Markov decision process using deep reinforcement learning. Preliminary results suggest that this new method can enable robots to learn control policies that solve complex manipulation problems without the need for precise geometric models of the objects being manipulated. While the method still estimates some elements of object pose implicitly, it does so in a way that generalizes well to novel objects and does not necessarily estimate full object pose unless required by the task.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着机器人的任务和环境变得越来越复杂,手动显式编程机器人行为的每个细节变得越来越具有挑战性。 另一种方法是通过经验来学习行为,这是一种被称为“强化学习”的机器学习,机器人通过试验和错误来学习。然而,纯粹的试错是低效的,这意味着机器人需要很长时间来学习。 该项目的目标是使机器人能够将注意力集中在环境的各个部分上,从而有效地学习和良好地概括新任务。 本研究的成果之一是,在家庭中使用的辅助机器人,例如配备了机械臂的辅助轮椅,能够学习如何更好地帮助体弱者和残疾人。本项目将开发一种新的方法,将深度强化学习(deep RL)应用于机器人操作问题,通过引入指示表示。指示表示相对于智能体在环境中放置的标记对状态/动作进行编码。在这个项目中,标记是一个6自由度参考框架,放置在三维点云中,或截断有符号距离函数。机器人通过使用深度强化学习解决马尔可夫决策过程来决定将标记放置在何处以及如何相对于该标记移动。初步结果表明,这种新方法可以使机器人学习控制策略,解决复杂的操作问题,而不需要精确的几何模型的对象被操纵。虽然该方法仍然估计物体的一些元素构成隐含,它这样做的方式,以及推广到新的对象,并不一定估计完整的对象构成,除非要求的task.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pick and Place Without Geometric Object Models
无需几何对象模型即可拾取和放置
- DOI:10.1109/icra.2018.8460553
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Gualtieri, Marcus;Pas, Andreas ten;Platt, Robert
- 通讯作者:Platt, Robert
Sample Efficient Grasp Learning Using Equivariant Models
- DOI:10.15607/rss.2022.xviii.071
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Xu Zhu;Dian Wang;Ondrej Biza;Guanang Su;R. Walters;Robert W. Platt
- 通讯作者:Xu Zhu;Dian Wang;Ondrej Biza;Guanang Su;R. Walters;Robert W. Platt
Equivariant Transporter Network
- DOI:10.15607/rss.2022.xviii.007
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Hao-zhe Huang;Dian Wang;R. Walters;Robert W. Platt
- 通讯作者:Hao-zhe Huang;Dian Wang;R. Walters;Robert W. Platt
Leveraging Fully Observable Policies for Learning under Partial Observability
- DOI:10.48550/arxiv.2211.01991
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Hai V. Nguyen;Andrea Baisero;Dian Wang;Chris Amato;Robert W. Platt
- 通讯作者:Hai V. Nguyen;Andrea Baisero;Dian Wang;Chris Amato;Robert W. Platt
Guest Editorial Open Discussion of Robot Grasping Benchmarks, Protocols, and Metrics
客座社论关于机器人抓取基准、协议和指标的公开讨论
- DOI:10.1109/tase.2018.2871354
- 发表时间:2018
- 期刊:
- 影响因子:5.6
- 作者:Mahler, Jeffrey;Platt, Rob;Rodriguez, Alberto;Ciocarlie, Matei;Dollar, Aaron;Detry, Renaud;Roa, Maximo A.;Yanco, Holly;Norton, Adam;Falco, Joe
- 通讯作者:Falco, Joe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Platt其他文献
The nature of essential hypertension.
原发性高血压的性质。
- DOI:
- 发表时间:
1959 - 期刊:
- 影响因子:0
- 作者:
Robert Platt - 通讯作者:
Robert Platt
Coarticulation in Markov Decision Processes
马尔可夫决策过程中的协同表达
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Khashayar Rohanimanesh;Robert Platt;S. Mahadevan;R. Grupen - 通讯作者:
R. Grupen
MIT Open Access Articles LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics
麻省理工学院开放获取文章 LQR-RRT*:基于自动导出的扩展启发式的最佳基于采样的运动规划
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alejandro Perez;Robert Platt;G. Konidaris;L. Kaelbling;Tomás Lozano - 通讯作者:
Tomás Lozano
Improving Grasp Skills Using Schema Structured Learning
使用模式结构化学习提高掌握技能
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Robert Platt;R. Grupen;A. Fagg - 通讯作者:
A. Fagg
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods
TRIPOD AI 声明:使用回归或机器学习方法报告临床预测模型的更新指南
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gary S. Collins;K. Moons;Paula Dhiman;Richard D. Riley;A. L. Beam;B. Calster;Marzyeh Ghassemi;Xiaoxuan Liu;Johannes B Reitsma;M. Smeden;A. Boulesteix;Jennifer Catherine Camaradou;L. Celi;S. Denaxas;A. Denniston;Ben Glocker;Robert M Golub;Hugh Harvey;Georg Heinze;Michael M Hoffman;A. Kengne;Emily Lam;Naomi Lee;Elizabeth W Loder;Lena Maier;B. Mateen;M. Mccradden;Lauren Oakden;Johan Ordish;Richard Parnell;Sherri Rose;Karandeep Singh;L. Wynants;P. Logullo;Abhishek Gupta;Adrian Barnett;Adrian Jonas;Agathe Truchot;Aiden Doherty;Alan Fraser;Alex Fowler;Alex Garaiman;Alistair Denniston;Amin Adibi;André Carrington;Andre Esteva;Andrew Althouse;Andrew Soltan;A. Appelt;Ari Ercole;Armando Bedoya;B. Vasey;B. Desiraju;Barbara Seeliger;B. Geerts;Beatrice Panico;Benjamin Fine;Benjamin Goldstein;B. Gravesteijn;Benjamin Wissel;B. Holzhauer;Boris Janssen;Boyi Guo;Brooke Levis;Catey Bunce;Charles Kahn;Chris Tomlinson;Christopher Kelly;Christopher Lovejoy;Clare McGenity;Conrad Harrison Constanza;Andaur Navarro;D. Nieboer;Dan Adler;Danial Bahudin;Daniel Stahl;Daniel Yoo;Danilo Bzdok;Darren Dahly;D. Treanor;David Higgins;David McClernon;David Pasquier;David Taylor;Declan O’Regan;Emily Bebbington;Erik Ranschaert;E. Kanoulas;Facundo Diaz;Felipe Kitamura;Flavio Clesio;Floor van Leeuwen;Frank Harrell;Frank Rademakers;G. Varoquaux;Garrett S Bullock;Gary Weissman;George Fowler;George Kostopoulos;Georgios Lyratzaopoulos;Gianluca Di;Gianluca Pellino;Girish Kulkarni;G. Zoccai;Glen Martin;Gregg Gascon;Harlan Krumholz;H. Sufriyana;Hongqiu Gu;H. Bogunović;Hui Jin;Ian Scott;Ijeoma Uchegbu;Indra Joshi;Irene M. Stratton;James Glasbey;Jamie Miles;Jamie Sergeant;Jan Roth;Jared Wohlgemut;Javier Carmona Sanz;J. Bibault;Jeremy Cohen;Ji Eun Park;Jie Ma;Joel Amoussou;John Pickering;J. Ensor;J. Flores;Joseph LeMoine;Joshua Bridge;Josip Car;Junfeng Wang;Keegan Korthauer;Kelly Reeve;L. Ación;Laura J. Bonnett;Lief Pagalan;L. Buturovic;L. Hooft;Maarten Luke Farrow;Van Smeden;Marianne Aznar;Mario Doria;Mark Gilthorpe;M. Sendak;M. Fabregate;M. Sperrin;Matthew Strother;Mattia Prosperi;Menelaos Konstantinidis;Merel Huisman;Michael O. Harhay;Miguel Angel Luque;M. Mansournia;Munya Dimairo;Musa Abdulkareem;M. Nagendran;Niels Peek;Nigam Shah;Nikolas Pontikos;N. Noor;Oilivier Groot;Páll Jónsson;Patrick Bossuyt;Patrick Lyons;Patrick Omoumi;Paul Tiffin;Peter Austin;Q. Noirhomme;Rachel Kuo;Ram Bajpal;Ravi Aggarwal;Richiardi Jonas;Robert Platt;Rohit Singla;Roi Anteby;Rupa Sakar;Safoora Masoumi;Sara Khalid;Saskia Haitjema;Seong Park;Shravya Shetty;Stacey Fisher;Stephanie Hicks;Susan Shelmerdine;Tammy Clifford;Tatyana Shamliyan;Teus Kappen;Tim Leiner;Tim Liu;Tim Ramsay;Toni Martinez;Uri Shalit;Valentijn de Jong;Valentyn Bezshapkin;V. Cheplygina;Victor Castro;V. Sounderajah;Vineet Kamal;V. Harish;Wim Weber;W. Amsterdam;Xioaxuan Liu;Zachary Cohen;Zakia Salod;Zane Perkins - 通讯作者:
Zane Perkins
Robert Platt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Platt', 18)}}的其他基金
FRR: Symmetric Policy Learning for Robotic Manipulation
FRR:机器人操作的对称策略学习
- 批准号:
2314182 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Manipulation Assistance for Activities of Daily Living in Everyday Environments
CHS:媒介:协作研究:日常环境中日常生活活动的操纵辅助
- 批准号:
1763878 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
S&AS: INT: COLLAB: Composable and Verifiable Design for Autonomous Humanoid Robots in Space Missions
S
- 批准号:
1724257 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
- 批准号:
1724191 - 财政年份:2017
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Human-Supervised Perception and Grasping in Clutter
NRI:协作研究:人类监督的杂乱中的感知和抓取
- 批准号:
1427081 - 财政年份:2014
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CAREER: Context-Aware Task-Oriented Dexterous Robotic Manipulation
职业:上下文感知、任务导向的灵巧机器人操作
- 批准号:
2239540 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313234 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313233 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
A soft biomimetic robotic micro-manipulation system
软仿生机器人微操作系统
- 批准号:
22KF0099 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Physics-informed Learning for Robotic Manipulation of Granular Media
用于颗粒介质机器人操作的物理信息学习
- 批准号:
2902121 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Studentship
FRR: Symmetric Policy Learning for Robotic Manipulation
FRR:机器人操作的对称策略学习
- 批准号:
2314182 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
PHYDL: Physics-informed Differentiable Learning for Robotic Manipulation of Viscous and Granular Media
PHYDL:用于粘性和颗粒介质机器人操作的物理信息微分学习
- 批准号:
EP/X018962/1 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
Flexible Control Authority With a Robotic Arm: Facilitating Seamless Transitions Between User and Robot Control in Multi-Action Manipulation Tasks.
机械臂的灵活控制权限:促进多动作操作任务中用户和机器人控制之间的无缝过渡。
- 批准号:
10637707 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别: