NRI: Biologically-inspired, hybrid quadruped robot control
NRI:仿生混合四足机器人控制
基本信息
- 批准号:1427422
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is about designing better legs for legged robots. When a robot needs to move across rough terrain, as would be the case when searching for victims in a disaster area, legged robots have advantages over wheeled or tracked robots. They can traverse such terrain more easily, for example, stepping over fallen beams and bricks. However, legged robots are inherently more complex. They have many more joints and are more difficult to control. The goal of the project is to use ideas from nature to overcome some of these difficulties. The shape and compliance of four-legged animals adds to their stability passively when they trot or gallop. These ideas will be incorporated into a four-legged robot, making its locomotion abilities more robust. A major issue to duplicate from nature is the animal's ability to adaptively change the compliance of their joints and legs. This is a primary objective of this project. In addition to the research objectives, this project also includes educational components involving graduate and undergraduate students as well as outreach to secondary schools.The approach taken in this project will simplify the control of quadruped robots by the use of directionally compliant legs to passively stabilize the robot under dynamic gaits such as trotting. Active control of the stiffness and joint equilibrium positions will allow for adaptive parameter changes to changing terrain, gaits, and robot variation (carry a load for example). The system will employ a hybrid controller using passive, under-actuated legs during gaits, but actively changing the passive characteristics. Stability of the robot is measured by the pitch and roll of the robot body. The adaptive controller will minimize errors in the desired pitch and roll by changing the joint stiffness, equilibrium angles and positions of each joint.
这个研究项目是关于为腿式机器人设计更好的腿。 当机器人需要在崎岖的地形上移动时,就像在灾区搜索受害者时一样,腿式机器人比轮式或履带式机器人更具优势。 他们可以更容易地穿越这些地形,例如,踩在倒下的横梁和砖块上。 然而,腿式机器人本质上更复杂。 它们有更多的关节,更难控制。 该项目的目标是利用大自然的想法来克服其中的一些困难。 四足动物的形状和顺应性增加了它们在小跑或飞奔时的被动稳定性。 这些想法将被整合到一个四足机器人中,使其运动能力更加强大。 从自然界复制的一个主要问题是动物适应性地改变其关节和腿的顺应性的能力。 这是该项目的主要目标。除了研究目的外,该项目还包括教育部分,涉及研究生和本科生,以及推广到中学。在这个项目中采取的方法将简化四足机器人的控制,通过使用定向柔性腿被动稳定机器人在动态步态,如小跑。 刚度和关节平衡位置的主动控制将允许自适应参数变化以改变地形、步态和机器人变化(例如承载负载)。 该系统将采用一种混合控制器,使用被动,欠驱动的腿在步态,但主动改变被动特性。 机器人的稳定性是通过机器人身体的俯仰和侧倾来衡量的。 自适应控制器将通过改变关节刚度、平衡角和每个关节的位置来最小化期望俯仰和滚转的误差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanford Meek其他文献
Sanford Meek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanford Meek', 18)}}的其他基金
Undergraduate Research in Mechanical Engineering
机械工程本科研究
- 批准号:
9000739 - 财政年份:1990
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
相似海外基金
(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
- 批准号:
EP/Z000998/1 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Fellowship
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Analysis of a Hydrogen Powered Train Performance using Inverse Simulation and Biologically Inspired Optimization Techniques
使用逆向仿真和仿生优化技术分析氢动力列车性能
- 批准号:
2907952 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Studentship
RET Site: Biologically Inspired Computing Models, Systems, and Applications
RET 站点:仿生计算模型、系统和应用
- 批准号:
2302070 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CIF: Small: Learning, Optimization & Analysis for Biologically Inspired Community Networks
CIF:小型:学习、优化
- 批准号:
2311653 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2325863 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
Biologically inspired knee prosthesis
仿生膝关节假体
- 批准号:
RGPIN-2018-04022 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Discovery Grants Program - Individual
Advancing DNA sequence analysis algorithms using biologically inspired and mathematical sound analysis at the University of Tokyo
东京大学利用生物学启发和数学声音分析推进 DNA 序列分析算法
- 批准号:
577723-2022 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Adaptive Action Representation for Biologically Inspired Robot Learning
仿生机器人学习的自适应动作表示
- 批准号:
577720-2022 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements