(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
基本信息
- 批准号:EP/Z000998/1
- 负责人:
- 金额:$ 26.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Although the most advanced design standards and recent construction methods ensure that buildings save lives during extreme events, recent statistics have shown that the global loss caused by extreme events is steadily growing. This proposal presents a novel, Demountable, Resilient, and Sustainable Construction (DISC) technology for next-generation infrastructure. The DISC, which is inspired by the anatomy of the human spine, is formed of a multi-storey pin-pin steel frame building and a core shear wall that is manufactured offsite and assembled on the construction site. The wall consists of i) precast composite segments (vertebrae), ii) thin layers of a new, high-performance polymer-based, entangled composite wire material (ECWM) between the segments (intervertebral discs), and iii) unbonded post-tensioning tendons that tie these two layers together. Thus, the vertebrae provide lateral stability of the structure under low-amplitude loading (e.g. wind) and damp the vibration resulting from trains in adjacent areas. When the building is subjected to extreme loading such as earthquakes, the intervertebral discs are compressed and damp the movement of the whole structure, and the tendons re-center the entire building. Thus, the building remains operational immediately after extreme events, i.e. it is resilient. The DISC is also sustainable and durable against environmental threats as it is composed of glass fibre reinforced polymer filled with fibre-reinforced concrete and low-carbon composite materials. To characterise the dynamic behaviour and design parameters of the DISC technology, a numerical parametric model is first constructed, and the mechanical properties of the ECWM will be characterised using full-scale material tests. The overall response of the DISC will be verified through medium-scale shaking table tests of DISC prototypes. From these results, a new sustainability and resilience-based design framework will be constructed that can be used.
尽管最先进的设计标准和最新的施工方法确保了建筑物在极端事件中拯救生命,但最近的统计数据显示,极端事件造成的全球损失正在稳步增长。该提案为下一代基础设施提供了一种新颖、可拆卸、有弹性和可持续的构建(DISC)技术。这个圆盘的灵感来自于人类脊柱的解剖,由一座多层的销钉钢架建筑和一个在现场制造并在施工现场组装的核心剪力墙组成。该壁由i)预制复合节段(椎骨),ii)节段之间的新型高性能高性能聚合物缠绕复合丝材料(ECWM)薄层组成,以及iii)将这两层连接在一起的无粘结后张力筋。因此,脊椎在低幅度载荷(如风)下为结构提供横向稳定性,并抑制邻近地区列车引起的振动。当建筑物受到地震等极端荷载时,椎间盘会被压缩并抑制整个结构的运动,筋会重新定位整个建筑物的中心。因此,在极端事件发生后,该建筑仍可立即运行,即它具有弹性。这种阀瓣也是可持续和经久耐用的,因为它由玻璃纤维增强聚合物填充纤维增强混凝土和低碳复合材料组成。为了描述圆盘技术的动态行为和设计参数,首先建立了一个数值参数模型,并将通过全尺寸材料试验来表征ECWM的机械性能。将通过圆盘原型的中型振动台试验来验证圆盘的整体响应。根据这些结果,将构建一个新的可持续和基于复原力的设计框架,可供使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Kashani其他文献
Mohammad Kashani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Kashani', 18)}}的其他基金
SPINE: Resilience-Based Design of Biologically Inspired Columns for Next-Generation Accelerated Bridge Construction
SPINE:基于弹性的仿生柱设计,用于下一代加速桥梁施工
- 批准号:
EP/R039178/1 - 财政年份:2018
- 资助金额:
$ 26.26万 - 项目类别:
Research Grant
相似海外基金
SS-DSC: Stainless steel-concrete composite beams with stainless-steel demountable shear connectors for sustainable infrastructure
SS-DSC:带有不锈钢可拆卸剪力连接件的不锈钢混凝土组合梁,适用于可持续基础设施
- 批准号:
EP/Y020278/1 - 财政年份:2023
- 资助金额:
$ 26.26万 - 项目类别:
Fellowship
Development of demountable superconducting contacts for MRI magnet switches
开发用于 MRI 磁体开关的可拆卸超导触点
- 批准号:
2603036 - 财政年份:2021
- 资助金额:
$ 26.26万 - 项目类别:
Studentship
Modular High-Field Superconducting Magnets with Demountable Joints for Fusion Energy Applications
用于聚变能应用的具有可拆卸接头的模块化高场超导磁体
- 批准号:
2820016 - 财政年份:2021
- 资助金额:
$ 26.26万 - 项目类别:
Studentship
Advanced numerical modelling and development of design rules for novel demountable steel-concrete composite bridges
新型可拆卸钢-混凝土组合桥梁的高级数值建模和设计规则开发
- 批准号:
1941822 - 财政年份:2017
- 资助金额:
$ 26.26万 - 项目类别:
Studentship
Steel-concrete composite beams using precast hollow-core slabs and a demountable shear connection mechanism
采用预制空心板和可拆卸剪力连接机构的钢-混凝土组合梁
- 批准号:
EP/P004253/1 - 财政年份:2016
- 资助金额:
$ 26.26万 - 项目类别:
Research Grant
Spacelink demountable PGRP truss joint
Spacelink 可拆卸 PGRP 桁架接头
- 批准号:
131937 - 财政年份:2015
- 资助金额:
$ 26.26万 - 项目类别:
Feasibility Studies
Spacelink demountable, composite space-frame
Spacelink 可拆卸复合空间框架
- 批准号:
131095 - 财政年份:2013
- 资助金额:
$ 26.26万 - 项目类别:
Feasibility Studies
The use of innovative anchors for the achievement of composite action for rehabilitating existing and deployment of demountable steel structures
使用创新型锚栓实现复合作用,修复现有和部署可拆卸钢结构
- 批准号:
DP110101328 - 财政年份:2011
- 资助金额:
$ 26.26万 - 项目类别:
Discovery Projects