CRCNS: Collaborative Research: Mapping and Control of Large-Scale Neural Dynamics
CRCNS:协作研究:大规模神经动力学的映射和控制
基本信息
- 批准号:1430087
- 负责人:
- 金额:$ 36.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Brain stimulation is currently being used to treat a variety of cognitive, neurological, and psychiatric disorders, including depression, Parkinson's disease, and schizophrenia. Despite this broad use, how brain stimulation works remains largely a mystery. This project aims to address this gap in understanding by studying and modeling how neural processes change with brain stimulation. The investigators aim to develop criteria by which to evaluate and optimize stimulation-based treatments of neurological and psychiatric disorders. To accompany the scientific advances, the investigators will engage in educational efforts to bring the research to the classroom and to enhance cross-institutional opportunities for students. The investigators will place special emphasis on mentoring and encouraging women and minorities on the academic path in science and engineering. In addition, the investigators are combining their efforts in the Skirkanich Internship in Network Visualization, which hosts undergraduate art students each summer. The investigators propose a new set of mathematical techniques to describe and predict neural processes and how they change with brain stimulation. Investigators at the University of California at Riverside (one of the most ethnically diverse research-intensive institutions in the U.S.) and the University of Pennsylvania will collaborate on theoretical, computational, and experimental research with three main research initiatives: (1) static and dynamic modeling of complex neural dynamics, identification of multi-resolution regions of interest in the human brain, the nature of their interconnections, and their function in observed cognitive dynamics; (2) analysis of network-wide dynamic properties of neural systems, characterization of brain regions based on controllability metrics, and design of non-disruptive control algorithms for the modulation of complex neural processes; (3) validation of models and control strategies in a wide variety of empirical settings to engineer and predict the outcomes of clinical interventions in neurological and psychiatric disorders. The success of this project will enable a deepened understanding of complex neurobiological systems, construct novel maps of the human brain and its dynamic processes, and develop non-disruptive control techniques for therapeutic brain stimulation protocols.
脑刺激目前被用于治疗各种认知、神经和精神疾病,包括抑郁症、帕金森病和精神分裂症。尽管这种广泛的使用,大脑刺激如何工作仍然是一个谜。该项目旨在通过研究和建模神经过程如何随着大脑刺激而变化来解决这一理解上的差距。研究人员的目标是制定标准,以评估和优化神经和精神疾病的刺激治疗。伴随着科学的进步,研究人员将参与教育工作,将研究带到课堂,并为学生增加跨机构的机会。调查人员将特别强调指导和鼓励妇女和少数民族在科学和工程的学术道路。此外,研究人员正在将他们的努力结合在Skirkanich网络可视化实习中,该实习每年夏天都会接待本科艺术学生。 研究人员提出了一套新的数学技术来描述和预测神经过程以及它们如何随着大脑刺激而变化。位于滨江的加州大学(美国种族最多样化的研究密集型机构之一)的研究人员和宾夕法尼亚大学将在理论、计算和实验研究方面进行合作,主要有三个研究项目:(1)复杂神经动力学的静态和动态建模,识别人类大脑中感兴趣的多分辨率区域,它们之间相互联系的性质,以及它们在观察到的认知动力学中的功能;(2)分析神经系统的网络范围的动态特性,基于可控性度量的大脑区域的表征,以及用于调制复杂神经过程的非破坏性控制算法的设计;(3)在各种各样的经验环境中验证模型和控制策略,以设计和预测神经和精神疾病临床干预的结果。该项目的成功将加深对复杂神经生物学系统的理解,构建人脑及其动态过程的新地图,并为治疗性脑刺激方案开发非破坏性控制技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle Bassett其他文献
Connectome Wide Study of Intrinsic Functional Connectivity Associated With Impulsive Choice in Adolescence
- DOI:
10.1016/j.biopsych.2021.02.245 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Azeez Adebimpe;Adam Pines;Bart Larsen;Mathew Cieslak;Danielle Bassett;Dan Romer;David Roalf;Raquel E. Gur;Ruben C. Gur;Daniel Wolf;Joe Kable;Theodore Satterthwaite - 通讯作者:
Theodore Satterthwaite
P206. Multivariate Patterns of Functional Connectivity are Linked to Borderline-Spectrum Symptoms in Young Adulthood and Youth
- DOI:
10.1016/j.biopsych.2022.02.440 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Max Bertolero;Azeez Adebimpe;Matthew Cieslak;Sydney Covitz;Eric Feczko;Audrey Houghton;Oscar Miranda-Dominguez;Adam Pines;Danielle Bassett;Damien Fair;Theodore Satterthwaite - 通讯作者:
Theodore Satterthwaite
Frequency and level dependence of the middle ear acoustic reflex and its decay measured in wideband absorbance with contralateral narrowband noise elicitors
中耳声反射的频率和水平依赖性及其衰减的测量,采用对侧窄带噪声刺激器的宽带吸光度
- DOI:
10.1016/j.heares.2025.109225 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:2.500
- 作者:
Abbie Baricevich;Danielle Bassett;Sophia Chan;Shayna Lavi;Jonathan Siegel - 通讯作者:
Jonathan Siegel
Transitions to Default Mode and Frontoparietal Network Activation States are Associated With Age and Working Memory Performance
- DOI:
10.1016/j.biopsych.2020.02.1164 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Eli Cornblath;Arian Ashourvan;Jason Z. Kim;Richard F. Betzel;Rastko Ciric;Azeez Adebimpe;Graham L. Baum;Xiaosong He;Kosha Ruparel;Tyler M. Moore;Ruben C. Gur;Raquel Gur;Russell Shinohara;David Roalf;Theodore D. Satterthwaite;Danielle Bassett - 通讯作者:
Danielle Bassett
375. Charting Dynamic Interactions between Large-Scale Brain Networks in Health and Disease
- DOI:
10.1016/j.biopsych.2017.02.392 - 发表时间:
2017-05-15 - 期刊:
- 影响因子:
- 作者:
Danielle Bassett - 通讯作者:
Danielle Bassett
Danielle Bassett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle Bassett', 18)}}的其他基金
NCS-FO: Collaborative Research: Analysis, prediction, and control of synchronized neural activity
NCS-FO:协作研究:同步神经活动的分析、预测和控制
- 批准号:
1926757 - 财政年份:2019
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
CAREER: Linking Graph Topology of Learned Information to Behavioral Variability via Dynamics of Functional Brain Networks
职业:通过功能性大脑网络的动力学将学习信息的图拓扑与行为变异性联系起来
- 批准号:
1554488 - 财政年份:2016
- 资助金额:
$ 36.15万 - 项目类别:
Continuing Grant
NCS-FO: Collaborative Research: A Mechanistic Model of Cognitive Control
NCS-FO:协作研究:认知控制的机制模型
- 批准号:
1631550 - 财政年份:2016
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
WORKSHOP: Quantitative Theories of Learning, Memory, and Prediction
研讨会:学习、记忆和预测的定量理论
- 批准号:
1441502 - 财政年份:2014
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Continuing Grant
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207747 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207727 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207700 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10610594 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
CRCNS Research Proposal: Collaborative Research: US-German Collaboration toward a biophysically principled network model of transcranial magnetic stimulation (TMS)
CRCNS 研究提案:合作研究:美德合作建立经颅磁刺激 (TMS) 的生物物理原理网络模型
- 批准号:
10708986 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207647 - 财政年份:2022
- 资助金额:
$ 36.15万 - 项目类别:
Standard Grant
CRCNS Research Project: Collaborative Research: Experimental, Numerical, and Robotic Study of the Role of Dynamic Load Sensing in Legged Locomotion
CRCNS 研究项目:协作研究:动态负载传感在腿式运动中的作用的实验、数值和机器人研究
- 批准号:
2113028 - 财政年份:2021
- 资助金额:
$ 36.15万 - 项目类别:
Continuing Grant