Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
基本信息
- 批准号:2207700
- 负责人:
- 金额:$ 24.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When decisions are made, which can be as simple as where to have lunch or as complicated as what career to pursue, time is often spent deliberating over uncertain evidence and possible outcomes. This deliberation process is central to behavioral and cognitive flexibility but requires overcoming a major challenge: determining when to stop deliberating and commit to a course of action. Many models that have been used to study human decision-making and to implement machine decision-making assume that decision commitment occurs when the accumulated evidence reaches a fixed value or bound. These “accumulate-to-bound” models, whose development last century helped formalize and improve decisions related to codebreaking, manufacturing, and other real-world applications, have also provided a useful starting point for understanding decision commitment in the brain. However, fixed bounds are most appropriate under fixed conditions, which are often used in laboratory experiments but rarely encountered in the real world. The goal of this study is to move beyond the “fixed bound” form of decision commitment and instead consider more flexible ways the brain uses to end deliberating and arrive at a decision. The research starts with a new, mathematically grounded theory that describes the advantages of using flexible forms of commitment under changing conditions. The Principal Investigators (PIs) then use this theory to design and interpret experiments that will provide a comprehensive new view of how human brains commit to decisions even when they are based on deliberations that occur during uncertain and changing conditions. This work will provide interdisciplinary training at the interface of mathematics, cognitive science, psychology, and neuroscience for undergraduate and graduate students from diverse backgrounds. The PIs will use research-related activities to encourage the participation of underrepresented groups in science. Also, the PIs will develop and disseminate resources, including novel datasets and analytic tools, that will benefit research and education in how the brain makes decisions. Finally, the PIs will increase public awareness of computational neuroscience and address the urgent need to increase scientific literacy and understanding of how science can benefit society. This will be accomplished via public lectures, contributions to the program “Engines of Our Ingenuity” broadcast by National Public Radio stations nationwide, Brain Awareness Week activities, and contributions to a website that explains brain research to non-specialists. Deliberative decisions free the brain from the immediacy of reflexive processing but pose a critical challenge: how does the brain decide when to stop deliberating and commit to a course of action? Our understanding of this commitment process has been dominated by a computational framework that assumes decisions are terminated once accumulated evidence reaches a predefined level or bound. These “accumulate-to-bound” models have close ties to normative theory and can explain a range of behavioral and neural findings. However, they are optimal only under the highly restrictive conditions used in many decision studies, in which the informativeness, rate of acquisition, and other features of the evidence are stable and known in advance. It is not known how the brain balances decision deliberation and commitment more generally, when temporally extended decisions must contend with our dynamic and uncertain world. The goal is to advance our understanding of the decision rules used by the brain under these conditions. The PIs start with a novel theoretical foundation that includes flexible decision bounds that are not predefined but instead can be updated while the decision is being formed to optimize performance even under changing conditions. They use this framework to guide the design and analysis of behavioral studies in humans and combine behavioral and neurophysiological studies in non-human primates, which they use to test their primary hypothesis that the primate brain uses dynamic, adaptive rules to support rational decision-making in changing and uncertain environments.This project is co-funded by the Division of Mathematical Sciences (DMS) within the Mathematical and Physical Sciences Directorate (MPS), Division of Information and Intelligent Systems (IIS) in the Directorate of Computer and Information Science and Engineering (CISE), and Division of Behavioral and Cognitive Sciences (BCS) within the Directorate for Social, Behavioral, and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当做出决定时,这可能很简单,就像在哪里吃午餐或像购买的职业一样复杂时,时间通常会花在不确定的证据和可能的结果上。这种审议过程对于行为和认知灵活性至关重要,但需要克服一个重大挑战:确定何时停止审议并承诺采取行动。许多用于研究人类决策并实施机器决策的模型都认为,当获得的证据达到固定价值或界限时,就会发生决策承诺。这些“累积”模型上世纪的发展帮助正式化和改善了与代码破坏,制造和其他现实世界应用相关的决策,也为了解大脑中的决策承诺提供了有用的起点。但是,在固定条件下,固定界限最合适,在实验室实验中通常使用,但在现实世界中很少遇到。这项研究的目的是超越决策承诺的“固定界限”形式,而是考虑大脑以结束审议和做出决定的更灵活的方式。该研究以一种新的数学基础理论开始,该理论描述了在不断变化的条件下使用灵活形式的承诺形式的优势。然后,主要研究人员(PIS)使用该理论来设计和解释实验,这些实验将为人类大脑如何做出决策提供全面的新观点,即使他们是基于在不确定和不断变化的条件下进行的讨论。这项工作将为来自潜水员背景的本科生和研究生的数学,认知科学,心理学和神经科学的界面提供跨学科培训。 PI将使用与研究相关的活动来鼓励代表性不足的群体参与科学。此外,PI将开发和传播资源,包括新颖的数据集和分析工具,这将使大脑如何做出决策有益于研究和教育。最后,PI将提高公众对计算神经科学的认识,并满足提高科学素养和了解科学如何使社会受益的迫切需求。这将通过公开演讲,全国国家公共广播电台播出的“我们创造力的发动机”计划的贡献,脑意识周的活动以及对向非专家解释大脑研究的网站的贡献。审议决定使大脑摆脱反身处理的立即处理,但构成了一个关键的挑战:大脑何时停止审议和承诺采取行动的决定如何?我们对这一承诺过程的理解是由一个计算框架主导的,该计算框架假设一旦累积证据达到预定义的水平或界限,就会终止决策。这些“积聚”模型与正常理论有着密切的联系,可以解释一系列行为和神经发现。但是,仅在许多决策研究中使用的高度限制性条件下,它们才是最佳选择,在许多决策研究中,信息,获取率和证据的其他特征是稳定且事先知道的。尚不清楚大脑如何平衡决策的审议和承诺,而暂时扩展的决策必须与我们的动态和不确定的世界抗衡。目的是提高我们对在这些条件下大脑使用的决策规则的理解。 PI从一个新颖的理论基础开始,其中包括灵活的决策范围,这些范围不是预定义的,但可以在制定决定时更新以优化绩效,即使在不断变化的条件下也可以优化绩效。 They use this framework to guide the design and analysis of behavioral studies in humans and combine behavioral and neurophysiological studies in non-human primates, which they use to test their primary hypothesis that the primary brain uses dynamic, adaptive rules to support rational decision-making in changing and uncertain environments.This project is co-funded by the Division of Mathematical Sciences (DMS) within the Mathematical and Physical Sciences Directorate (MPS), Division of Information以及计算机和信息科学与工程局(CISE)的智能系统(IIS),以及在社会,行为和经济科学局(SBE)局内行为和认知科学(BCS)的划分。本奖反映了NSF的立法任务,并通过评估通过基金会的知识优点和广泛的评估来进行评估,并被认为是宝贵的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Bayesian inference of Markov transition rates
马尔可夫转移率的自适应贝叶斯推理
- DOI:10.1098/rspa.2022.0453
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Barendregt, Nicholas W.;Webb, Emily G.;Kilpatrick, Zachary P.
- 通讯作者:Kilpatrick, Zachary P.
Impact of correlated information on pioneering decisions
相关信息对开拓性决策的影响
- DOI:10.1103/physrevresearch.5.033020
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Stickler, Megan;Ott, William;Kilpatrick, Zachary P.;Josić, Krešimir;Karamched, Bhargav R.
- 通讯作者:Karamched, Bhargav R.
Distinct Excitatory and Inhibitory Bump Wandering in a Stochastic Neural Field
随机神经场中明显的兴奋性和抑制性凹凸游走
- DOI:10.1137/22m1482329
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Cihak, Heather L.;Eissa, Tahra L.;Kilpatrick, Zachary P.
- 通讯作者:Kilpatrick, Zachary P.
An emergent temporal basis set robustly supports cerebellar time-series learning.
紧急时间基础集有力地支持小脑时间序列学习。
- DOI:10.1152/jn.00312.2022
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Gilmer,JesseI;Farries,MichaelA;Kilpatrick,Zachary;Delis,Ioannis;Cohen,JeremyD;Person,AbigailL
- 通讯作者:Person,AbigailL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Kilpatrick其他文献
Zachary Kilpatrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Kilpatrick', 18)}}的其他基金
Spatiotemporal Neural Dynamics of Visual Decisions
视觉决策的时空神经动力学
- 批准号:
1853630 - 财政年份:2019
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Robust spatiotemporal dynamics in multi-layer neuronal networks
多层神经元网络中鲁棒的时空动力学
- 批准号:
1615737 - 财政年份:2016
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
International Conference on Mathematical Neuroscience
国际数学神经科学会议
- 批准号:
1642544 - 财政年份:2016
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Architecture for robust spatiotemporal dynamics in neuronal networks
神经网络中鲁棒时空动力学的架构
- 批准号:
1311755 - 财政年份:2013
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 24.24万 - 项目类别:
Continuing Grant
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207747 - 财政年份:2022
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207727 - 财政年份:2022
- 资助金额:
$ 24.24万 - 项目类别:
Standard Grant