NSF/DOE Solar Hydrogen Fuel: Engineering Surfaces, Interfaces, and Bulk Materials for Unassisted Solar Photoelectrochemical (PEC) Water Splitting
NSF/DOE 太阳能氢燃料:用于无辅助太阳能光电化学 (PEC) 水分解的工程表面、界面和散装材料
基本信息
- 批准号:1433442
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Principal Investigator: Thomas F. JaramilloNumber: 1433442 Nontechnical DescriptionThere is growing urgency to develop renewable alternatives to fossil fuels for satisfying global energy and chemical demands. Hydrogen gas is a promising renewable fuel that can be made from sustainable resources. One particularly promising route to produce renewable hydrogen gas is photoelectrochemical (PEC) water splitting, in which the photons of solar energy are used to convert water into hydrogen and oxygen gas in the presence of a catalyst material. This proposed research effort is aimed at tackling fundamental research challenges in this field, facilitating the development of active, stable, and readily available materials that can absorb the sun's photons and use these photons to drive the splitting of water into hydrogen gas on the surface of the material. Towards this end, the proposed research effort will modify the surface chemistry of mixtures of metal oxide compounds and elements abundant in the earth's crust to enable the electronic properties that improve light absorption and catalyse water splitting. Continued studies will improve the stability of these materials in water. Graduate students and undergraduate students will be the primary researchers on this project, building the skills necessary for them to grow into future leaders in the renewable energy technology sector. The project activities also feature significant outreach efforts to the Latino community, including K-12 and undergraduate students in Puerto Rico, as well as Latino students and parents in the Palo Alto, California community. Technical DescriptionHydrogen gas is a promising renewable fuel which can be made from sustainable resources. This project will perform an integrated study of the surfaces, interfaces, and bulk materials for unassisted photoelectrochemical (PEC) splitting of water to hydrogen gas. Computational modeling suggests that a tandem cell consisting of a Si photocathode and a bismuth vanadate photoanode can reach solar-to-hydrogen (STH) efficiencies of 10%, corresponding to100 J/s of chemical energy per square meter of solar energy collection surface. The goal of this project is to gain a fundamental understanding of materials designed to achieve 10% STH in a tandem cell that is stable in acid and consists of only earth-abundant elements. To achieve this goal, Si photocathodes as well as high-performance III-V semiconductor photoanodes will be engineered for improved activity and stability in acid by modifying the surface with molybdenum sulfide nano-materials. Similarly, bismuth vanadate photoanodes will be engineered for improved electronic properties, durability, and catalysis in acids. Outcomes from studies will provide a fundamental understanding of the failure mechanisms in PEC materials. Tandem cells of Si and bismuth vanadate will be fabricated and tested for hydrogen and oxygen gas production in both the laboratory under controlled conditions and at outdoor testing facilities under true solar conditions using US Department of Energy National Renewable Energy Laboratory facilities. Overall, this approach has the potential to advance fundamental understanding while also creating new technologies with the potential for efficient and stable hydrogen production by PEC water-splitting. With respect to education and broadening participation, graduate students and undergraduate students will be the primary researchers on this project, building the skills necessary for them to grow into future leaders in the renewable energy technology sector. The project activities also feature significant outreach efforts to the Latino community, including K-12 and undergraduate students in Puerto Rico, as well as Latino students and parents in the Palo Alto, California community.
主要研究者:托马斯F. Jaramillo编号:1433442非技术性描述为满足全球能源和化学品需求,开发化石燃料的可再生替代品的紧迫性日益增加。 氢气是一种很有前途的可再生燃料,可以从可持续资源中获得。 生产可再生氢气的一种特别有前途的途径是光电化学(PEC)水分解,其中太阳能的光子用于在催化剂材料存在下将水转化为氢气和氧气。这项拟议的研究工作旨在解决该领域的基础研究挑战,促进开发活性、稳定且易于获得的材料,这些材料可以吸收太阳的光子并利用这些光子在表面驱动水分解为氢气。材料。 为此,拟议的研究工作将改变金属氧化物化合物和地壳中丰富元素的混合物的表面化学性质,使其具有改善光吸收和催化水分解的电子特性。 持续的研究将提高这些材料在水中的稳定性。 研究生和本科生将成为该项目的主要研究人员,培养他们成长为可再生能源技术领域未来领导者所需的技能。项目活动还包括对拉丁裔社区的重大外联工作,包括波多黎各的K-12和本科生,以及加州帕洛阿尔托社区的拉丁裔学生和家长。技术描述氢气是一种很有前途的可再生燃料,可以从可持续资源中提取。 该项目将对表面,界面和散装材料进行综合研究,用于水到氢气的无辅助光电化学(PEC)分解。 计算模型表明,由硅光电阴极和钒酸铋光电阳极组成的串联电池可以达到10%的太阳能-氢气(STH)效率,对应于每平方米太阳能收集表面100 J/s的化学能。 该项目的目标是获得设计用于在串联电池中实现10% STH的材料的基本理解,该串联电池在酸中稳定并且仅由地球丰富的元素组成。为了实现这一目标,硅光电阴极以及高性能III-V族半导体光电阳极将通过用硫化钼纳米材料修饰表面来提高酸中的活性和稳定性。 类似地,钒酸铋光阳极将被设计用于改进的电子特性、耐久性和在酸中的催化作用。 研究结果将为PEC材料的失效机制提供基本的理解。硅和钒酸铋的串联电池将被制造和测试氢气和氧气的生产,在实验室控制条件下,并在室外测试设施下,真正的太阳能条件下使用美国能源部国家可再生能源实验室设施。 总的来说,这种方法有可能促进基本的理解,同时也创造了新的技术,有可能通过PEC水分解实现高效和稳定的氢气生产。 在教育和扩大参与方面,研究生和本科生将成为该项目的主要研究人员,培养他们成长为可再生能源技术领域未来领导者所需的技能。项目活动还包括对拉丁裔社区的重大外联工作,包括波多黎各的K-12和本科生,以及加州帕洛阿尔托社区的拉丁裔学生和家长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Jaramillo其他文献
Thomas Jaramillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Jaramillo', 18)}}的其他基金
I-Corps: On-farm production of nitrogen fertilizer from air, water, and renewable electricity
I-Corps:利用空气、水和可再生电力在农场生产氮肥
- 批准号:
2041553 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: Manipulating energy conversion chemistry with metal overlayer structures
职业:利用金属覆盖层结构操纵能量转换化学
- 批准号:
1066515 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
BRIGE: Nanostructured Transition Metal Dichalcogenides for the Solar Production of Hydrogen
BRIGE:用于太阳能制氢的纳米结构过渡金属二硫属化物
- 批准号:
0824484 - 财政年份:2008
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
集成DOE的激光熔覆工艺及先进镍基高温合金熔覆质量控制机理研究
- 批准号:51675303
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319662 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319661 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: DOE/NSF Workshop on Correctness in Scientific Computing
合作研究:DOE/NSF 科学计算正确性研讨会
- 批准号:
2319663 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
アメリカ民事手続におけるJohn Doe litigationの一考察
美国民事诉讼中对无名氏诉讼的思考
- 批准号:
22K01121 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operations and Maintenance(con't) of NSF/DOE Public Access Repository
NSF/DOE 公共访问存储库的运营和维护(续)
- 批准号:
2218714 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Contract Interagency Agreement
IAA NSF and DOE for ORISE Research Participation Program Fellow Support for RNSF
IAA NSF 和 DOE for ORISE 研究参与计划研究员对 RNSF 的支持
- 批准号:
2227816 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Contract Interagency Agreement
DoE optimization of scalable MSC expansion in 3D configurations
DoE 对 3D 配置中可扩展 MSC 扩展的优化
- 批准号:
572640-2022 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
University Undergraduate Student Research Awards
Library Synthesis in Flow Made Easier: DoE & ML
Flow 中的文库合成变得更容易:DoE
- 批准号:
2601291 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Studentship