SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene

SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化

基本信息

  • 批准号:
    1434548
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

1434548 (Ierapetritou), 1434456 (Vlachos)The need to minimize anthropogenic CO2 emissions and our dependence on foreign fossil fuels has been a main driver for the discovery and development of renewable and sustainable production of fuels and chemicals from other sources. Toward this goal, non-edible lignocellulosic biomass (plant biomass composed of cellulose, hemicellulose, and lignin) is a promising renewable feedstock since it is abundant, does not directly compete with the food chain, can lead to nearly carbon-free processes with concomitant reduction in CO2 emissions, and contains the building block of chemicals and fuels, i.e., carbon. It has been estimated that the annual crude oil demands in the US are of the same order of magnitude as the potentially available quantities of lignocellulosic materials and the throughput of chemicals is significantly lower, compared to fuels, and can easily be met. The recent boom in shale gas reduces our dependence on foreign petroleum, but also reduces the cracking of naphtha and thus, the production of C3-C6 chemicals from fossil fuels. One such example is BTX (Benzene, Toluene, Xylenes). Among BTX constituents, p-xylene (pX) is of great interest since it is the foundation for terephthalic acid (a polymer precursor for PET bottles used for the vast majority of food and liquid containers) and has an annual global demand of ~35 million metric tons/yr in 2010. The consumption of PET is expected to increase by 4-5%/yr over the next five years. pX has a similar number of carbon atoms to the building blocks of lignocellulose, and thus, its renewable production is an appealing target and forms the basis of the case study of the proposed work. Penetration of biomass based chemicals into existing markets requires that their production is sustainable and cost competitive to that of the petrochemical counterparts. Economic analysis and life cycle analysis (LCA) are often conducted to evaluate new biomass-based processes. It is emphatically the case that such predictions (including our own work) are based on rudimentary information, e.g., overall yield, and as such, are very uncertain. Currently, catalysts, solvents, and separation schemes are by-and-large discovered by trial and error. This situation is reminiscent of the genesis of oil industry that was followed by a century of discovery to evolve to its current mature stage. In order to realize renewable routes in the foreseeable future, a paradigm shift in philosophy and strategy is necessary that leverages recent scientific advances and core capabilities. It is the thesis of this research that a symbiotic program between systems analysis and fundamental science can lead to knowledge-based discovery and rapid commercialization while advancing scientific frontiers. This grand challenge-based vision defines the intellectual merit of the proposed program.Intellectual Merit: To meet this grand challenge-based objective, a "hierarchical multiscale" program is planned, where systems analysis is informing the fundamental science of key processes and parameters, and the science team is performing experiments and simulations to collect this much needed knowledge to reduce systems uncertainty and render systems predictions reliable. In simple terms, the systems analysis focuses the space of scientific research and accelerates knowledge generation, where it makes sense to have, and the science in turn makes economic and life cycle analyses more reliable. The conversion of biomass-derived sugars to para-xylene has been selected as a representative case study. Broader Impact: The proposed work will have impact on the specific domain of catalytic kinetics, separation technology, systems analysis, and the overall goal of establishing a sustainable manufacturing route of valuable chemicals from lignocellulose. The introduction of renewable chemicals can have a major impact on US economic development and sustainability. Similar to petro-based refineries, process synthesis will unavoidably play a vital role in sustainable and cost-effective biorefineries. The hierarchical multiscale program proposed herein can also pave the way of future research efforts between disciplines toward accelerated discovery and genesis of knowledge where is most impactful. The results will be disseminated broadly through publications, lectures, and integration of research findings within the graduate and undergraduate curricula of the two institutions involved. Graduate students will be trained in interdisciplinary science, including catalysis, reaction engineering, separation sciences, and process systems engineering, by establishing a new way of thinking in the development of a sustainable chemical process. In addition, the PIs will broaden participation of students from underrepresented groups and provide an enriching experience to K-12 students through a variety of educational activities.
1434548(Ierapetritou),1434456(Vlachos)减少人为二氧化碳排放的需要和我们对外国化石燃料的依赖一直是发现和开发可再生和可持续生产其他来源的燃料和化学品的主要驱动力。为了实现这一目标,非食用木质纤维素生物质(由纤维素、半纤维素和木质素组成的植物生物质)是一种很有前途的可再生原料,因为它资源丰富,不直接与食物链竞争,可以实现几乎无碳的过程,同时减少二氧化碳排放,并包含化学物质和燃料的组成部分,即碳。据估计,美国每年的原油需求量与木质纤维材料的潜在可获得量相同,与燃料相比,化学品的产量要低得多,很容易满足。最近页岩气的繁荣减少了我们对外国石油的依赖,但也减少了石脑油的裂解,从而减少了从化石燃料中生产C3-C6化学品。BTX(苯、甲苯、二甲苯)就是这样一个例子。在BTX成分中,对二甲苯(PX)是对苯二甲酸(一种用于绝大多数食品和液体容器的PET瓶的聚合物前体)的基础,2010年全球年需求量约为3500万吨/年。预计未来五年,聚酯的消费量将以每年4-5%的速度增长。PX的碳原子数量与木质纤维素的积木相似,因此,其可再生产品是一个吸引人的目标,并构成拟议工作的案例研究的基础。以生物质为基础的化学品要想打入现有市场,其生产必须是可持续的,并且与石化产品相比具有成本竞争力。经济分析和生命周期分析(LCA)经常被用来评估基于生物质的新工艺。强调的是,这种预测(包括我们自己的工作)是基于基本信息,例如总产量,因此非常不确定。目前,催化剂、溶剂和分离方案基本上是通过反复试验发现的。这种情况让人想起石油工业的起源,在那之后的一个世纪里,石油工业的发现发展到了现在的成熟阶段。为了在可预见的未来实现可再生路线,必须转变理念和战略,利用最新的科学进步和核心能力。这项研究的主题是,系统分析和基础科学之间的共生计划可以导致基于知识的发现和快速商业化,同时推进科学前沿。这一基于挑战的宏伟愿景定义了拟议计划的智力优点。智力优点:为了满足这一基于挑战的宏伟目标,计划了一个“分层多尺度”计划,其中系统分析为关键过程和参数的基础科学提供信息,科学团队正在进行实验和模拟,以收集这些亟需的知识,以减少系统的不确定性,并使系统预测可靠。简而言之,系统分析集中了科学研究的空间,加速了知识的产生,这是有意义的,而科学反过来又使经济和生命周期分析更加可靠。生物质来源的糖转化为对二甲苯已被选为代表性案例研究。更广泛的影响:拟议的工作将对催化动力学、分离技术、系统分析以及从木质纤维素建立一条可持续的有价值化学品生产路线的总体目标产生影响。可再生化学品的引入可以对美国的经济发展和可持续性产生重大影响。与基于石油的炼油厂类似,过程合成将不可避免地在可持续和具有成本效益的生物炼油厂中发挥至关重要的作用。这里提出的分层多尺度计划也可以为未来学科之间的研究努力铺平道路,以加速发现和创造最具影响力的知识。结果将通过出版物、讲座以及将研究成果整合到两所相关机构的研究生和本科生课程中来广泛传播。研究生将接受跨学科的科学培训,包括催化、反应工程、分离科学和过程系统工程,通过建立可持续发展的化学过程的新思维方式。此外,PIs将扩大来自代表性不足群体的学生的参与,并通过各种教育活动为K-12学生提供丰富的体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianthi Ierapetritou其他文献

Application of flowsheet modeling for scheduling and debottlenecking analysis to support the development and scale-up of a plasma-derived therapeutic protein purification process
  • DOI:
    10.1016/j.bej.2024.109501
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chaoying Ding;Matthew Kujawa;Michael Bartkovsky;Maen Qadan;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou
Machine learning-based optimization of a multi-step ion exchange chromatography for ternary protein separation
  • DOI:
    10.1016/j.compchemeng.2024.108642
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chaoying Ding;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou
Topology-informed derivative-free metaheuristic optimization method
  • DOI:
    10.1016/j.compchemeng.2024.108973
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ching-Mei Wen;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou
Using residence time distribution in pharmaceutical solid dose manufacturing – A critical review
  • DOI:
    10.1016/j.ijpharm.2021.121248
  • 发表时间:
    2021-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Pooja Bhalode;Huayu Tian;Shashwat Gupta;Sonia M. Razavi;Andres Roman-Ospino;Shahrzad Talebian;Ravendra Singh;James V. Scicolone;Fernando J. Muzzio;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou
Effect of material properties on the residence time distribution (RTD) of a tablet press feed frame
  • DOI:
    10.1016/j.ijpharm.2020.119961
  • 发表时间:
    2020-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ryoichi Furukawa;Ravendra Singh;Marianthi Ierapetritou
  • 通讯作者:
    Marianthi Ierapetritou

Marianthi Ierapetritou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marianthi Ierapetritou', 18)}}的其他基金

FMRG: Eco: A Systems-Enabled Paradigm Shift for Modular Sustainable Chemical Manufacturing
FMRG:Eco:系统支持的模块化可持续化学制造范式转变
  • 批准号:
    2134471
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Supply Chain Decision Making Framework Considering Uncertainty
考虑不确定性的供应链决策框架
  • 批准号:
    2217472
  • 财政年份:
    2022
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
EAGER: Cybermanufacturing: Advanced Modeling and Information Management in Pharmaceutical Manufacturing
EAGER:网络制造:药品制造中的高级建模和信息管理
  • 批准号:
    1547171
  • 财政年份:
    2015
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Workshop on Process Intensification September 30-October 1, 2014, Arlington, VA
过程强化研讨会 2014 年 9 月 30 日至 10 月 1 日,弗吉尼亚州阿灵顿
  • 批准号:
    1450788
  • 财政年份:
    2014
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Integration of scheduling and control using closed loop implementation
使用闭环实现集成调度和控制
  • 批准号:
    1159244
  • 财政年份:
    2012
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Innovative methodologies for integrated planning and scheduling and industrial applications
集成规划和调度以及工业应用的创新方法
  • 批准号:
    0966861
  • 财政年份:
    2010
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Commercializing of Continuous Pharmaceutical Manufacturing Technology
连续药物制造技术的商业化
  • 批准号:
    0951845
  • 财政年份:
    2009
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Systematic Mathematical Strategies for Stochastic Modeling and Uncertainty in Production Planning and Scheduling
生产计划和调度中随机建模和不确定性的系统数学策略
  • 批准号:
    0625515
  • 财政年份:
    2006
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Travel Grant: FOCAPO 2008: Multi-Scale Integration of R&D, Manufacturing, and Optimization for Enterprise-Wide Operations
旅行补助金:FOCAPO 2008:R 的多尺度整合
  • 批准号:
    0638947
  • 财政年份:
    2006
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803630
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803677
  • 财政年份:
    2018
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Environmental Fate and Effects of Dichloroacetamide Safeners: An Overlooked Class of Emerging Contaminants?
SusChEM:合作研究:二氯乙酰胺安全剂的环境命运和影响:一类被忽视的新兴污染物?
  • 批准号:
    1702610
  • 财政年份:
    2017
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes
合作研究:SusChEM:解锁油脂化学生产酶选择性的基本机制
  • 批准号:
    1703504
  • 财政年份:
    2017
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergistic effects in plasma-catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703211
  • 财政年份:
    2017
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了