Reduced Order Models of the Navier-Stokes Equations of Fluid Flows

流体流动纳维-斯托克斯方程的降阶模型

基本信息

  • 批准号:
    1435474
  • 负责人:
  • 金额:
    $ 47.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

Turbulence is the apparently random motion that occurs commonly in almost all fluid flows. It has been called one of the most challenging unsolved problems in Newtonian physics. The aggregate cost to our society resulting from our incomplete understanding of turbulence is significant. Consider, for example, the environmental and economic costs associated with sub-optimal performance of virtually every fluid-thermal system such as internal combustion engines and air-conditioners. It is usually not possible to directly and routinely simulate turbulent flow because its multi-scale characteristics require prohibitively high computational resources. Even when adequate computational resources are available, simulations often provide too little understanding of the solutions they produce. There are significant scientific and engineering benefits in developing and studying (reduced-order) models of turbulence that retain the needed physical fidelity while substantially reducing the size and cost of the computational model. The ultimate goal of reduced-order modeling of turbulence is to provide efficient and accurate solutions with minimal reliance on auxiliary empirical models. Empirical models are inherently undesirable because they degrade simulation accuracy and reliability.The research objective of this project is to develop a reduced-order modeling approach to turbulent fluid flows that is free of empirical closure models. Unlike traditional approaches, the new methodology does not rely on empirical turbulence modeling or ad hoc modification of the Navier-Stokes equations. It provides spatial basis functions different from the usual proper orthogonal decomposition basis function in that, in addition to optimally representing the solution, the new basis functions also provide stable reduced-order models. The approach is illustrated with three test cases: two-dimensional flow inside a square lid-driven cavity, two-dimensional mixing layer, and three-dimensional turbulent flow around the Ahmed body. Future work will extend this method to more complex flows including the effects of higher spatial dimensions and higher flow velocities (Reynolds numbers).
湍流是一种明显的随机运动,几乎在所有的流体流动中都普遍存在。它被称为牛顿物理学中最具挑战性的未解决问题之一。我们对动荡的不完全理解给我们的社会造成的总成本是巨大的。例如,考虑与几乎每个流体热系统(如内燃机和空调)的次优性能相关的环境和经济成本。 由于湍流的多尺度特性需要非常高的计算资源,因此通常不可能直接和常规地模拟湍流。即使有足够的计算资源,模拟往往提供太少的了解他们产生的解决方案。在开发和研究湍流的(降阶)模型中有显着的科学和工程效益,这些模型保留了所需的物理保真度,同时大大降低了计算模型的尺寸和成本。湍流降阶模型的最终目标是在最小程度上依赖于辅助经验模型的情况下提供有效和准确的解。经验模型由于降低了模拟的精度和可靠性而不受欢迎,本课题的研究目标是开发一种不依赖经验封闭模型的湍流降阶模拟方法。与传统的方法不同,新的方法不依赖于经验湍流模型或专门修改的Navier-Stokes方程。它提供了不同于通常的正交分解基函数的空间基函数,除了最佳地表示解之外,新的基函数还提供稳定的降阶模型。该方法示出了三个测试用例:二维流动内的一个正方形的盖子驱动的空腔,二维混合层,三维湍流周围的艾哈迈德机构。未来的工作将扩展这种方法更复杂的流动,包括更高的空间尺寸和更高的流速(雷诺数)的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Earl Dowell其他文献

On modal cross-coupling in the asymptotic modal limit
  • DOI:
    10.1016/j.jsv.2017.11.039
  • 发表时间:
    2018-03-03
  • 期刊:
  • 影响因子:
  • 作者:
    Dean Culver;Earl Dowell
  • 通讯作者:
    Earl Dowell
An Experimental Study on the Actuator Line Method with Anisotropic Regularization Kernel
各向异性正则化核驱动器线法实验研究
  • DOI:
    10.3390/en13040977
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhe Ma;Liping Lei;Earl Dowell;Pan Zeng
  • 通讯作者:
    Pan Zeng
Iterative techniques for analyzing nonlinear vibrating dynamical systems in the frequency domain
  • DOI:
    10.1007/s11071-017-4005-0
  • 发表时间:
    2017-12-21
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Dean Culver;Earl Dowell
  • 通讯作者:
    Earl Dowell

Earl Dowell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Earl Dowell', 18)}}的其他基金

Collaborative Research: Experiment, Theory, and Simulation of Aeroelastic Limit Cycle Oscillations for Energy Harvesting Applications
合作研究:能量收集应用的气动弹性极限循环振荡的实验、理论和模拟
  • 批准号:
    1907500
  • 财政年份:
    2019
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Power Generation from Fluid-Structure Interaction using Mathematical, Computational and Experimental Modeling
合作研究:利用数学、计算和实验模型通过流固耦合发电
  • 批准号:
    1307778
  • 财政年份:
    2013
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical, Computational and Experimental Modeling of the Multidisciplinary Dynamics of Fluid-Structure Interaction
合作研究:流固耦合多学科动力学的数学、计算和实验建模
  • 批准号:
    1101948
  • 财政年份:
    2011
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Dynamics Days 2004
2004 年动力日
  • 批准号:
    0406581
  • 财政年份:
    2004
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
ITR: Novel Hybrid (Discrete/Continuous) Computational Models for Very High Dimensional Nonlinear Dynamical Systems: From the Molecular to the Continuum Scale
ITR:用于极高维非线性动力系统的新型混合(离散/连续)计算模型:从分子到连续尺度
  • 批准号:
    0218601
  • 财政年份:
    2002
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Continuing Grant
The National Journal of Young Investigators
全国青年研究者杂志
  • 批准号:
    9815504
  • 财政年份:
    1998
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Continuing Grant
REG: Equipment to Modernize a Subsonic Wind Tunnel for Gust Simulation and Measurment
REG:用于阵风模拟和测量的亚音速风洞现代化设备
  • 批准号:
    9212953
  • 财政年份:
    1992
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Asymptotic Modal Analysis of Structural-Acoustic Systems
结构声学系统的渐近模态分析
  • 批准号:
    8822479
  • 财政年份:
    1989
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Continuing Grant
Dynamics of Nonlinear and Nonconservative Systems with Several Degrees of Freedom
多自由度非线性和非保守系统的动力学
  • 批准号:
    8504105
  • 财政年份:
    1985
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Dynamics of Nonlinear and Nonconservative Systems Using Component Mode Analysis
使用分量模式分析的非线性和非保守系统动力学
  • 批准号:
    8315193
  • 财政年份:
    1983
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
  • 批准号:
    2345048
  • 财政年份:
    2023
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Tensorial Reduced Order Models: Development, Analysis, and Applications
张量降阶模型:开发、分析和应用
  • 批准号:
    2309197
  • 财政年份:
    2023
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
CAREER: Scale-dependent reduced-order models for turbulent flows
职业:湍流的尺度相关降阶模型
  • 批准号:
    2237537
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Continuing Grant
Reduced-Order Models of Wind Farm Blockage and Far-Field Wake Recovery
风电场阻塞和远场尾流恢复的降阶模型
  • 批准号:
    556326-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Alliance Grants
Bayesian Uncertainty Quantification for Microfluidics: Assessing and Improving the Reliability of Reduced-Order Models and Sample Detection Schemes
微流体的贝叶斯不确定性量化:评估和提高降阶模型和样品检测方案的可靠性
  • 批准号:
    459970814
  • 财政年份:
    2021
  • 资助金额:
    $ 47.95万
  • 项目类别:
    WBP Position
RUI: Development of Fast Methods for Solving the Boltzmann Equation through Reduced Order Models, Machine Learning, and Optimal Transport
RUI:开发通过降阶模型、机器学习和最优传输求解玻尔兹曼方程的快速方法
  • 批准号:
    2111612
  • 财政年份:
    2021
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Sparsification of reduced order models for fluid and fluid-structure problems
流体和流体结构问题的降阶模型的稀疏化
  • 批准号:
    2611907
  • 财政年份:
    2021
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Studentship
DEVELOPMENT OF REDUCED ORDER ZONAL MODELS WITH DATA-DRIVEN APPROACHES FOR COMPLEX FLUID MIXING
使用数据驱动的复杂流体混合方法开发降阶分区模型
  • 批准号:
    2586079
  • 财政年份:
    2021
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Studentship
Inverse Scattering Using Data-Driven Reduced-Order Models
使用数据驱动的降阶模型进行逆散射
  • 批准号:
    2110265
  • 财政年份:
    2021
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of Reduced Order Models for Poroelasticity and Related Problems
合作研究:孔隙弹性及相关问题的降阶模型的开发
  • 批准号:
    2110781
  • 财政年份:
    2021
  • 资助金额:
    $ 47.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了