Tensorial Reduced Order Models: Development, Analysis, and Applications
张量降阶模型:开发、分析和应用
基本信息
- 批准号:2309197
- 负责人:
- 金额:$ 26.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-scale numerical simulation of dynamical systems is ubiquitous in all areas of computational science and engineering. With many computational tasks in biomedical or Earth sciences involving billions of degrees of freedom, model order reduction is necessary to scale the problem of interest down to a tractable size that fits onto the available computing platforms. Model order reduction techniques allow to construct a reduced order model (ROM) that retains the key features of a high-fidelity computational model while being much cheaper to simulate. Conventionally, a ROM represents a specific instance of the system and needs to be recomputed from scratch should the system experience significant changes to its properties. Thus, the question of constructing a ROM that captures the dependence of the system on its parameters arises. This is the main objective of the so-called parametric model reduction. Its main challenge is to develop efficient ROMs that can accurately predict solutions of parametrized high-fidelity models for parameter values that lie outside of the "training" set. The project will include training of graduate students.This project aims at addressing the above-mentioned challenges by developing a ROM that extends the ideas of conventional projection-based model order reduction to parametric systems using the concepts and tools of modern numerical multi-linear algebra. The main techniques utilized are tensor decompositions, low-rank tensor approximation and completion. In particular, low-rank tensor approximations such as canonical polyadic, Tucker (a.k.a. high order SVD, HOSVD) and tensor train are employed in place of truncated SVD, a key conventional dimension-reduction technique. The resulting reduced model is referred to as tensorial ROM (TROM). The three main objectives of the project are: (1) developing a two-stage (training/evaluation) TROM for non-linear dynamical systems, including a tensor version of the Discrete Empirical Interpolation Method; (2) developing novel low-rank tensor completion methods for use with TROM to ease the burden of the training stage by working with a sparse sampling of the parameter space; (3) integrating TROM into inverse modeling workflows, in particular, parameter estimation of the phase-field model for a multi-component lipid membrane modeled by surface Cahn-Hilliard equations, and quantitative imaging with waves for medical imaging and geophysical monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统的大规模数值模拟在计算科学和工程的各个领域都是普遍存在的。生物医学或地球科学中的许多计算任务涉及数十亿个自由度,为了将感兴趣的问题缩小到适合可用计算平台的可处理的大小,模型顺序缩减是必要的。模型降阶技术允许构建一个降阶模型(ROM),它保留了高保真计算模型的关键特征,同时更便宜地模拟。通常,一个ROM代表系统的一个特定实例,如果系统的属性发生重大变化,则需要从头开始重新计算。因此,构造一个能够捕获系统对其参数依赖性的ROM的问题就出现了。这就是所谓的参数化模型简化的主要目标。它的主要挑战是开发有效的rom,能够准确地预测参数化高保真模型的解,这些参数值位于“训练”集之外。该项目将包括研究生的培训。该项目旨在通过开发一个ROM来解决上述挑战,该ROM使用现代数值多线性代数的概念和工具将传统的基于投影的模型降阶思想扩展到参数系统。应用的主要技术有张量分解、低秩张量逼近和补全。特别地,采用正则多进、Tucker(又称高阶奇异值分解,HOSVD)和张量序列等低秩张量近似代替截断奇异值分解这一传统降维的关键技术。得到的简化模型被称为张量ROM (TROM)。该项目的三个主要目标是:(1)为非线性动力系统开发两阶段(训练/评估)TROM,包括离散经验插值方法的张量版本;(2)开发新的低秩张量补全方法,通过使用参数空间的稀疏采样来减轻训练阶段的负担;(3)将TROM集成到逆建模工作流程中,特别是基于表面Cahn-Hilliard方程的多组分脂质膜相场模型的参数估计,以及用于医学成像和地球物理监测的波定量成像。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Mamonov其他文献
Alexander Mamonov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Mamonov', 18)}}的其他基金
Reduced order models for imaging and inversion with waves and diffusive fields
用于波和扩散场成像和反演的降阶模型
- 批准号:
1619821 - 财政年份:2016
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
相似国自然基金
2C型蛋白磷酸酶REDUCED DORMANCY 5通过激酶-磷酸酶蛋白复合体调控种子休眠的分子机制
- 批准号:32000250
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
- 批准号:
2340266 - 财政年份:2024
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
- 批准号:
22KJ0183 - 财政年份:2023
- 资助金额:
$ 26.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
- 批准号:
23KJ0127 - 财政年份:2023
- 资助金额:
$ 26.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Granular Bioink Made-To-Order from Macroporous Collagen Particles Offers Excellent Printability, Shape Fidelity, and Reduced Tissue Contraction
由大孔胶原颗粒定制的颗粒生物墨水具有出色的印刷适性、形状保真度和减少的组织收缩
- 批准号:
576571-2022 - 财政年份:2022
- 资助金额:
$ 26.89万 - 项目类别:
Idea to Innovation
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
- 批准号:
2053358 - 财政年份:2022
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
CAREER: Goal-Oriented Variable Transformations for Efficient Reduced-Order and Data-Driven Modeling
职业:面向目标的变量转换,用于高效的降阶和数据驱动建模
- 批准号:
2144023 - 财政年份:2022
- 资助金额:
$ 26.89万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
- 批准号:
2053429 - 财政年份:2022
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant
NNA Research: Development of a Nonlinear Reduced Order Modeling Framework for Marine Structures Operating in The Arctic and Sub-Arctic Regions
NNA 研究:为北极和亚北极地区运行的海洋结构开发非线性降阶建模框架
- 批准号:
2127095 - 财政年份:2022
- 资助金额:
$ 26.89万 - 项目类别:
Standard Grant