DMREF: SusChEM: Simulation-Based Predictive Design of All-Organic Phosphorescent Light-Emitting Molecular Materials

DMREF:SusChEM:基于模拟的全有机磷光发光分子材料的预测设计

基本信息

项目摘要

DMREF: SUSCHEM: SIMULATION-BASED PREDICTIVE DESIGN OF ALL-ORGANIC PHOSPHORESCENT LIGHT-EMITTING MOLECULAR MATERIALSNon-technical Description: Organic light emitting diodes (OLED) exhibit remarkable energy efficiency in applications ranging from urban lighting to large-screen display panels. Current technologies are based on phosphorescent materials that contain organo-metallic compounds, which involve heavy-metal ions. These are expensive to procure, present limitations with regard to device longevity, and in some cases are considered environmentally unsafe or even toxic. The goal of this research is to eliminate the need for heavy-metal ions by developing a fundamentally new class of all-organic phosphorescent molecules. The principal task is to design molecules in which the juxtaposition of electronic orbitals promotes the processes underlying phosphorescence while at the same time the chemical bonding patterns provide the structural rigidity needed to minimize the non-radiative decay of electronic excitations. To this end an integrative computational-experimental approach is employed, in which molecular simulations, chemical synthesis, and materials characterization are combined in a synergistic and iterative sequence. The expected outcomes of this project are novel environmentally benign phosphorescent materials that are based on sustainable chemistries and that are immediately deployable for lighting applications. The new insights into the functional response of molecular materials gained while perfecting metal-free OLED benefits organic electronics in general, and advance technologies such as photovoltaics, sensors, and displays. Finally, software toolkits, data management utilities, and workflows for simulation-based predictive materials design are established as a new paradigm for materials development.Technical Description: The efficiency of phosphorescent materials is based on the ability to emit not only from singlet but also triplet excited states, which are populated as a result of spin-orbit coupling. The strength of this coupling is attributed to the presence of heavy-metal ions in organo-metallic compounds. However, organo-metallics are accompanied by significant challenges: besides the high cost of precious metals, dislocated metal ions in the emitting layer may trap charge, which jeopardizes device longevity. By serendipity, the co-PI demonstrated metal-free organic phosphors with unprecedented high solid-state phosphorescent quantum yield of up to 68% at ambient conditions. The current research aims to further develop this fundamentally new, environmentally benign, and chemically sustainable class of all-organic phosphorescent molecules with improved performance characteristics by employing an integrated computational-experimental approach. Specific objectives are to (i) eliminate the heavy metal ions form the emitting molecules with the aim to lower materials cost and obtainability, improve ease of fabrication, and prolong device lifetime and dependability; (ii) deconvolute the dual roles of halogen bonding, i.e., to promote spin-orbit coupling and suppress vibrational energy dissipation, and supplant the intermolecular secondary bonding-induced phosphorescence enhancement mechanism with intramolecular analogs; (iii) optimize the molecular architectures of both the emitting and host species so as to minimize vibration-mediated non-radiative decay of excited states through stiffening of intramolecular bonding patterns, stabilization of emitters by host molecules designed to suppress detrimental vibrations within effectively packed geometries, and crystallization of emitters within nano-confinement. To this end, concept emitter and host molecules are constructed and their structure and electronic properties, e.g., excited state energies, singlet-triplet transition rates, charge mobilities, etc., predicted using first-principles calculations. Structural models are generated using shape packing algorithms and molecular simulations, and possible crystal structures are predicted. Best candidate molecules are synthesized, characterized, and their emissive and vibrational properties measured.
DMREF:SUSCHEM:全有机磷光发光分子材料的基于模拟的预测设计非技术描述:有机发光二极管 (OLED) 在从城市照明到大屏幕显示面板的应用中表现出卓越的能源效率。 目前的技术基于含有有机金属化合物的磷光材料,其中涉及重金属离子。这些设备的采购成本高昂,设备使用寿命受到限制,并且在某些情况下被认为对环境不安全甚至有毒。 这项研究的目标是通过开发一类全新的全有机磷光分子来消除对重金属离子的需求。 主要任务是设计分子,其中电子轨道的并置促进磷光的过程,同时化学键合模式提供最小化电子激发的非辐射衰减所需的结构刚性。 为此,采用了综合计算实验方法,其中分子模拟、化学合成和材料表征以协同和迭代的顺序结合在一起。 该项目的预期成果是基于可持续化学物质并可立即部署用于照明应用的新型环保磷光材料。 在完善无金属 OLED 的过程中获得的对分子材料功能响应的新见解有利于有机电子产品,以及光伏、传感器和显示器等先进技术。 最后,建立了基于模拟的预测材料设计的软件工具包、数据管理实用程序和工作流程,作为材料开发的新范式。技术描述:磷光材料的效率不仅基于单重激发态的发射能力,还基于三重激发态的发射能力,这些激发态是由于自旋轨道耦合而产生的。这种耦合的强度归因于有机金属化合物中重金属离子的存在。然而,有机金属化合物也面临着重大挑战:除了贵金属的高成本之外,发光层中的位错金属离子可能会捕获电荷,从而危及器件的寿命。偶然间,联合 PI 证明了无金属有机磷光体在环境条件下具有高达 68% 的前所未有的高固态磷光量子产率。目前的研究旨在通过采用综合计算实验方法进一步开发这种全新的、环境友好的、化学上可持续的全有机磷光分子,其具有改进的性能特征。具体目标是 (i) 消除发射分子中的重金属离子,以降低材料成本和可得性、提高制造简易性并延长器件寿命和可靠性; (ii)解卷积卤素键的双重作用,即促进自旋轨道耦合和抑制振动能量耗散,并用分子内类似物取代分子间二次键合诱导的磷光增强机制; (iii) 优化发射物质和主体物质的分子结构,以便通过加强分子内键合模式、通过旨在抑制有效堆积的几何形状内的有害振动的主体分子稳定发射体以及纳米限制内发射体的结晶来最小化振动介导的激发态的非辐射衰变。为此,构建了概念发射体和主体分子,并使用第一原理计算预测了它们的结构和电子特性,例如激发态能量、单线态-三线态转变速率、电荷迁移率等。使用形状填充算法和分子模拟生成结构模型,并预测可能的晶体结构。合成、表征最佳候选分子,并测量其发射和振动特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kieffer其他文献

Cs oxide aggregation in SIMS craters in organic samples for optoelectronic application
  • DOI:
    10.1016/j.susc.2012.04.003
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Khanh Q. Ngo;Patrick Philipp;John Kieffer;Tom Wirtz
  • 通讯作者:
    Tom Wirtz
Polarity-induced dual room-temperature phosphorescence involving the T2 states of pure organic phosphors
涉及纯有机磷光体 T2 态的极性诱导双室温磷光
  • DOI:
    10.1039/d2tc02152h
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lixin Zang;Wenhao Shao;Onas Bolton;Ramin Ansari;Seong-Jun Yoon;Jung-Moo Heo;John Kieffer;Adam Matzger;Jinsang Kim
  • 通讯作者:
    Jinsang Kim
Prevalence of chlamydia and gonorrhea in US Air Force male basic trainees
美国空军男性基础学员衣原体和淋病患病率
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jacqueline Kate Wade;Joseph E. Marcus;John Kieffer;Korey Kasper;Joshua Smalley
  • 通讯作者:
    Joshua Smalley
Artists of the new wave
新浪潮艺术家
Fragility and the rate of change of the energy landscape topography
  • DOI:
    10.1016/j.nocx.2022.100101
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cameran Beg;John Kieffer
  • 通讯作者:
    John Kieffer

John Kieffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kieffer', 18)}}的其他基金

Comparative Evaluation of Ionic Transport Mechanisms in Solid-State Electrolytes
固态电解质中离子传输机制的比较评估
  • 批准号:
    1610742
  • 财政年份:
    2016
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
Active Regulation of Thermal Boundary Conductance
热边界传导的主动调节
  • 批准号:
    1402845
  • 财政年份:
    2014
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Optimizing Ion Mobility, Chemical Stability, and Mechanical Rigidity in Composite Electrolytes
优化复合电解质中的离子淌度、化学稳定性和机械刚性
  • 批准号:
    1106058
  • 财政年份:
    2011
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
Perturbation Codes: A New Class of Linear Convolutional Codes
扰动码:一类新的线性卷积码
  • 批准号:
    0830381
  • 财政年份:
    2008
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Information Theory of Data Structures
合作研究:数据结构信息论
  • 批准号:
    0830457
  • 财政年份:
    2008
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Materials World Network: Growth, Kinetics, and Morphology of Multi-Layered Organic Thin Films via Low-Energy Secondary Ion Mass Spectrometry
材料世界网络:通过低能二次离子质谱法研究多层有机薄膜的生长、动力学和形态
  • 批准号:
    0806867
  • 财政年份:
    2008
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
Enhancing Materials Science and Engineering Curricula through Computation
通过计算加强材料科学与工程课程
  • 批准号:
    0633180
  • 财政年份:
    2007
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Structural Developments in Ion-Implanted Sol-Gel Films and Resulting Glasses
离子注入溶胶-凝胶薄膜和所得玻璃的结构发展
  • 批准号:
    0605905
  • 财政年份:
    2006
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
  • 批准号:
    0230662
  • 财政年份:
    2001
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
  • 批准号:
    0072258
  • 财政年份:
    2000
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
SusChEM: Harnessing Stable Peroxides for Selective Nitrogen Atom and Fluoroalkyl Transfer
SusChEM:利用稳定的过氧化物进行选择性氮原子和氟烷基转移
  • 批准号:
    2200040
  • 财政年份:
    2022
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
CAREER: SusChEM: Iron Catalysts for the Reduction of Amides
职业:SusChEM:用于还原酰胺的铁催化剂
  • 批准号:
    2146728
  • 财政年份:
    2021
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
CAREER: SusChEM: Renewable Biocatalysts for Degradation of Persistent Organic Contaminants Using Synthetic Biology
职业:SusChEM:利用合成生物学降解持久性有机污染物的可再生生物催化剂
  • 批准号:
    2154345
  • 财政年份:
    2021
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
SusChEM: C-H Bond Electroactivation of Nonpolar Organic Substrates in Water: Enzyme-Mediated Reaction Pathways in Microemulsions
SusChEM:水中非极性有机底物的 C-H 键电活化:微乳液中酶介导的反应途径
  • 批准号:
    2035669
  • 财政年份:
    2021
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
CAREER: SusChEM: Copper-Catalyzed Aerobic Dehydrogenative C-C Bond Formation through sp3 C-H Bond Functionalization
职业:SusChEM:通过 sp3 C-H 键功能化铜催化有氧脱氢 C-C 键形成
  • 批准号:
    2028770
  • 财政年份:
    2020
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
SusChEM: Non-precious metal substitution into hydrogenation metal alloy catalysts deposited onto redox active supports for facile nitrate destruction in drinking water
SusChEM:用非贵金属替代沉积在氧化还原活性载体上的氢化金属合金催化剂,以轻松破坏饮用水中的硝酸盐
  • 批准号:
    1922504
  • 财政年份:
    2019
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 99.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了