Active Regulation of Thermal Boundary Conductance

热边界传导的主动调节

基本信息

项目摘要

CBET-1402845Kieffer (Univ. of Michigan, Ann Arbor)Molecular-scale simulations have shown that when applying an electric field to an electro-active polymer it causes it to constrict and it becomes mechanically stiffer. As a result, the thermal conductivity of the polymer increases by up to 40%. Similarly, when the polymer adheres to a metallic substrate, which serves to apply the field, the adhesive forces are intensified and simulations predict that the heat conductance across this interface increases by a factor of six. Accordingly, one can devise a heat valve by sandwiching a thin electro-active polymer film between two metallic films, and by applying a few tens of volts to these metal films, depending on film thickness, one can turn alter the heat flow rate across this multi-layered structure by a factor of three to four. The objective of this project is to demonstrate this heat flow switching mechanism experimentally, to clearly elucidate the underlying physical principles, and based on these insights, to improve the materials design, for example by creating nano-porous structures of molecularly bonded polymer and ceramic components that exhibit larger deformation amplitudes, so as to achieve bigger heat flow amplification ratios. The expected outcome of this research is a technology with application in numerous situations that require thermal management, including regulating heat flow in confined environments, e.g., living organisms, engines, fuel cells, sensors, and chemical reactors, and even thermal diodes, i.e., devices that allow one to control the direction of heat flow. The research findings may inspire technologies such as actuated membranes for controlled selective filtering, sensors with time-differential sampling capability, deployable medical devices for targeted drug and heat delivery, e.g., for localized cancer treatment. Finally, the research strategy employed here may impact science and technology beyond a specific discipline by validating an emerging research simulation-guided approach and by demonstrating an innovative materials development approach.The goal of this research is to explore novel nano-structural materials designs that allow for the in situ regulation of thermal transport properties at interfaces and surfaces, i.e., switching between extreme levels of heat transfer or continuously adjusting the thermal conductance within that range. This functional response is achieved by optimizing the structure and topology of electro-active polymers incorporated into dense and nano-porous hybrid materials, i.e., in which the organic and inorganic components are dispersed at the molecular level and chemically bonded to one another, so as to make most efficient use of their inherent properties. To accomplish this goal computation is used to explore the fundamental principles that govern materials behavior and determine the most effective molecular configurations for the targeted functional response. The design principles so obtained guide materials development and appropriate chemical synthesis routes, and are validated by characterizing the dielectric, mechanical, and thermal transport behavior of the resulting materials. First, the underling materials design concepts, which ensues from a molecular simulation-based proof-of-concept study, predicting a 40% thermal conductivity and a six-fold thermal boundary conductance increase when applying an electric field to an ultra-thin layer of piezoelectric polymer deposited on a metal substrate, is verified experimentally and the underlying mechanisms are identified. From these insights, blueprints for the design of materials design that yields maximal thermal transport regulating behavior are derived. Accordingly, nano-porous polymer-inorganic hybrid materials are explored as materials that potentially yield magnified changes in thermal transport properties because of their large strains in response to piezoelectric actuation. Conversely, large-amplitude actuation in purposely designed nano-porous structures are investigated for application as adjustable membranes for selective filtration, detection of pathogens, time-selective sampling, targeted drug delivery, and fluid flow regulation.
CBET-1402845 Kieffer(大学分子尺度模拟表明,当对电活性聚合物施加电场时,它会使其收缩,并使其机械变得更坚硬。结果,聚合物的导热系数增加了高达40%。类似地,当聚合物附着在金属衬底上时,粘附力会增强,模拟预测该界面上的热导增加了6倍。因此,人们可以通过将一层薄的电活性聚合物膜夹在两个金属膜之间来设计热阀,并且通过对这些金属膜施加几十伏特的电压,根据膜的厚度,人们可以将穿过这种多层结构的热流率改变三到四倍。本项目的目标是通过实验演示这种热流转换机制,清楚地阐明其潜在的物理原理,并基于这些见解来改进材料设计,例如通过创建具有更大变形幅度的分子键合聚合物和陶瓷组件的纳米孔结构,以实现更大的热流放大比。这项研究的预期成果是一项在许多需要热管理的情况下应用的技术,包括调节受限环境中的热流,例如活体、发动机、燃料电池、传感器和化学反应器,甚至热敏二极管,即允许控制热流方向的设备。这些研究成果可能会启发一些技术,如用于受控选择性过滤的驱动膜、具有时差采样能力的传感器、用于靶向药物和热传递的可部署医疗设备,例如用于局部癌症治疗的可部署医疗设备。最后,这里采用的研究策略可能会通过验证新兴的研究模拟指导方法和演示创新的材料开发方法来影响特定学科以外的科学和技术。本研究的目标是探索允许原位调节界面和表面的热传输特性的新型纳米结构材料设计,即在极端的热传输水平之间切换或在该范围内连续调节热导。这种功能响应是通过优化电活性聚合物的结构和拓扑结构来实现的,这些聚合物被结合到致密的纳米多孔杂化材料中,即有机和无机成分在分子水平上分散并以化学方式相互键合,从而最有效地利用它们的固有性质。为了实现这一目标,计算被用来探索支配材料行为的基本原理,并确定目标功能响应的最有效的分子构型。由此得到的设计原则指导了材料的开发和适当的化学合成路线,并通过对所得材料的介电、机械和热传输行为的表征进行了验证。首先,对基于分子模拟的概念验证研究的基本材料设计概念进行了实验验证,预测了在金属衬底上沉积的超薄压电聚合物层上施加电场时,热导率将增加40%,热界电导增加6倍,并确定了潜在的机制。从这些见解中,得出了产生最大热传输调节行为的材料设计的蓝图。因此,纳米多孔聚合物-无机杂化材料被认为是可能产生放大的热传输特性变化的材料,因为它们在压电驱动下的大应变。相反,在特意设计的纳米多孔结构中的大幅度驱动被用于作为可调节膜的应用,用于选择性过滤、病原体检测、时间选择性采样、靶向药物输送和流体流动调节。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kieffer其他文献

Cs oxide aggregation in SIMS craters in organic samples for optoelectronic application
  • DOI:
    10.1016/j.susc.2012.04.003
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Khanh Q. Ngo;Patrick Philipp;John Kieffer;Tom Wirtz
  • 通讯作者:
    Tom Wirtz
Polarity-induced dual room-temperature phosphorescence involving the T2 states of pure organic phosphors
涉及纯有机磷光体 T2 态的极性诱导双室温磷光
  • DOI:
    10.1039/d2tc02152h
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lixin Zang;Wenhao Shao;Onas Bolton;Ramin Ansari;Seong-Jun Yoon;Jung-Moo Heo;John Kieffer;Adam Matzger;Jinsang Kim
  • 通讯作者:
    Jinsang Kim
Prevalence of chlamydia and gonorrhea in US Air Force male basic trainees
美国空军男性基础学员衣原体和淋病患病率
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jacqueline Kate Wade;Joseph E. Marcus;John Kieffer;Korey Kasper;Joshua Smalley
  • 通讯作者:
    Joshua Smalley
Artists of the new wave
新浪潮艺术家
Fragility and the rate of change of the energy landscape topography
  • DOI:
    10.1016/j.nocx.2022.100101
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cameran Beg;John Kieffer
  • 通讯作者:
    John Kieffer

John Kieffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kieffer', 18)}}的其他基金

Comparative Evaluation of Ionic Transport Mechanisms in Solid-State Electrolytes
固态电解质中离子传输机制的比较评估
  • 批准号:
    1610742
  • 财政年份:
    2016
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Continuing Grant
DMREF: SusChEM: Simulation-Based Predictive Design of All-Organic Phosphorescent Light-Emitting Molecular Materials
DMREF:SusChEM:基于模拟的全有机磷光发光分子材料的预测设计
  • 批准号:
    1435965
  • 财政年份:
    2014
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Optimizing Ion Mobility, Chemical Stability, and Mechanical Rigidity in Composite Electrolytes
优化复合电解质中的离子淌度、化学稳定性和机械刚性
  • 批准号:
    1106058
  • 财政年份:
    2011
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Continuing Grant
Perturbation Codes: A New Class of Linear Convolutional Codes
扰动码:一类新的线性卷积码
  • 批准号:
    0830381
  • 财政年份:
    2008
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Information Theory of Data Structures
合作研究:数据结构信息论
  • 批准号:
    0830457
  • 财政年份:
    2008
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Materials World Network: Growth, Kinetics, and Morphology of Multi-Layered Organic Thin Films via Low-Energy Secondary Ion Mass Spectrometry
材料世界网络:通过低能二次离子质谱法研究多层有机薄膜的生长、动力学和形态
  • 批准号:
    0806867
  • 财政年份:
    2008
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Continuing Grant
Enhancing Materials Science and Engineering Curricula through Computation
通过计算加强材料科学与工程课程
  • 批准号:
    0633180
  • 财政年份:
    2007
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Structural Developments in Ion-Implanted Sol-Gel Films and Resulting Glasses
离子注入溶胶-凝胶薄膜和所得玻璃的结构发展
  • 批准号:
    0605905
  • 财政年份:
    2006
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
  • 批准号:
    0230662
  • 财政年份:
    2001
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
  • 批准号:
    0072258
  • 财政年份:
    2000
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant

相似海外基金

Nanoscale Temperature Mapping and Thermal Regulation of Intracellular Dynamics
纳米级温度测绘和细胞内动力学的热调节
  • 批准号:
    10502123
  • 财政年份:
    2022
  • 资助金额:
    $ 29.44万
  • 项目类别:
Nanoscale Temperature Mapping and Thermal Regulation of Intracellular Dynamics
纳米级温度测绘和细胞内动力学的热调节
  • 批准号:
    10687130
  • 财政年份:
    2022
  • 资助金额:
    $ 29.44万
  • 项目类别:
Development of high-performance Li batteries with autonomic thermal regulation of their performance by encapsulated nanosized phase change materi
通过封装纳米相变材料开发具有自主热调节性能的高性能锂电池
  • 批准号:
    2599519
  • 财政年份:
    2021
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Studentship
Smart regulation of thermal infrared radiation with meta-structured metal-insulator transition
通过元结构金属-绝缘体转变智能调节热红外辐射
  • 批准号:
    1953803
  • 财政年份:
    2020
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Standard Grant
Re-understanding of Systemic Metabolism through Skin-mediated Thermal Regulation
通过皮肤介导的热调节重新理解全身代谢
  • 批准号:
    20K21620
  • 财政年份:
    2020
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Thermal regulation of a channel flow using phase change material
使用相变材料对通道流量进行热调节
  • 批准号:
    526769-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 29.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaboration concerning Thermal Regulation of Biofuel Producing Microalgae using Phase Change Materials
使用相变材料对生产生物燃料的微藻进行热调节的合作
  • 批准号:
    513663-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Thermal Regulation of Biofuel Producing Microalgae using Phase Change Materials
使用相变材料生产生物燃料的微藻的热调节
  • 批准号:
    510942-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Therapeutic Thermal Regulation in Critical Illness
危重疾病的热调节治疗
  • 批准号:
    nhmrc : GNT1124421
  • 财政年份:
    2017
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Early Career Fellowships
Therapeutic Thermal Regulation in Critical Illness
危重疾病的热调节治疗
  • 批准号:
    nhmrc : 1124421
  • 财政年份:
    2017
  • 资助金额:
    $ 29.44万
  • 项目类别:
    Early Career Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了