Active Regulation of Thermal Boundary Conductance
热边界传导的主动调节
基本信息
- 批准号:1402845
- 负责人:
- 金额:$ 29.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1402845Kieffer (Univ. of Michigan, Ann Arbor)Molecular-scale simulations have shown that when applying an electric field to an electro-active polymer it causes it to constrict and it becomes mechanically stiffer. As a result, the thermal conductivity of the polymer increases by up to 40%. Similarly, when the polymer adheres to a metallic substrate, which serves to apply the field, the adhesive forces are intensified and simulations predict that the heat conductance across this interface increases by a factor of six. Accordingly, one can devise a heat valve by sandwiching a thin electro-active polymer film between two metallic films, and by applying a few tens of volts to these metal films, depending on film thickness, one can turn alter the heat flow rate across this multi-layered structure by a factor of three to four. The objective of this project is to demonstrate this heat flow switching mechanism experimentally, to clearly elucidate the underlying physical principles, and based on these insights, to improve the materials design, for example by creating nano-porous structures of molecularly bonded polymer and ceramic components that exhibit larger deformation amplitudes, so as to achieve bigger heat flow amplification ratios. The expected outcome of this research is a technology with application in numerous situations that require thermal management, including regulating heat flow in confined environments, e.g., living organisms, engines, fuel cells, sensors, and chemical reactors, and even thermal diodes, i.e., devices that allow one to control the direction of heat flow. The research findings may inspire technologies such as actuated membranes for controlled selective filtering, sensors with time-differential sampling capability, deployable medical devices for targeted drug and heat delivery, e.g., for localized cancer treatment. Finally, the research strategy employed here may impact science and technology beyond a specific discipline by validating an emerging research simulation-guided approach and by demonstrating an innovative materials development approach.The goal of this research is to explore novel nano-structural materials designs that allow for the in situ regulation of thermal transport properties at interfaces and surfaces, i.e., switching between extreme levels of heat transfer or continuously adjusting the thermal conductance within that range. This functional response is achieved by optimizing the structure and topology of electro-active polymers incorporated into dense and nano-porous hybrid materials, i.e., in which the organic and inorganic components are dispersed at the molecular level and chemically bonded to one another, so as to make most efficient use of their inherent properties. To accomplish this goal computation is used to explore the fundamental principles that govern materials behavior and determine the most effective molecular configurations for the targeted functional response. The design principles so obtained guide materials development and appropriate chemical synthesis routes, and are validated by characterizing the dielectric, mechanical, and thermal transport behavior of the resulting materials. First, the underling materials design concepts, which ensues from a molecular simulation-based proof-of-concept study, predicting a 40% thermal conductivity and a six-fold thermal boundary conductance increase when applying an electric field to an ultra-thin layer of piezoelectric polymer deposited on a metal substrate, is verified experimentally and the underlying mechanisms are identified. From these insights, blueprints for the design of materials design that yields maximal thermal transport regulating behavior are derived. Accordingly, nano-porous polymer-inorganic hybrid materials are explored as materials that potentially yield magnified changes in thermal transport properties because of their large strains in response to piezoelectric actuation. Conversely, large-amplitude actuation in purposely designed nano-porous structures are investigated for application as adjustable membranes for selective filtration, detection of pathogens, time-selective sampling, targeted drug delivery, and fluid flow regulation.
CBET-1402845 Kieffer(密歇根大学,安阿伯)分子尺度模拟已经表明,当向电活性聚合物施加电场时,它会导致它收缩,并且它在机械上变得更硬。 因此,聚合物的导热率增加了高达40%。 类似地,当聚合物粘附到用于施加场的金属基底上时,粘附力被加强,并且模拟预测跨该界面的热导率增加了六倍。 因此,可以通过在两个金属膜之间夹一个薄的电活性聚合物膜来设计一个热阀,并且通过向这些金属膜施加几十伏电压,取决于膜的厚度,可以将穿过该多层结构的热流率改变三到四倍。 该项目的目标是通过实验证明这种热流切换机制,以清楚地阐明潜在的物理原理,并基于这些见解,改进材料设计,例如通过创建分子结合的聚合物和陶瓷组件的纳米多孔结构,表现出更大的变形幅度,从而实现更大的热流放大率。 这项研究的预期成果是一项技术,可应用于许多需要热管理的情况,包括调节受限环境中的热流,例如,生物体、发动机、燃料电池、传感器和化学反应器,甚至热二极管,即,可以控制热流方向的装置。 这些研究结果可能会激发一些技术,如用于受控选择性过滤的致动膜,具有时间差采样能力的传感器,用于靶向药物和热量输送的可部署医疗设备,例如,用于局部癌症治疗。 最后,通过验证新兴的研究模拟引导方法和展示创新的材料开发方法,本文采用的研究策略可能会影响特定学科以外的科学和技术。本研究的目标是探索新型纳米结构材料设计,允许在界面和表面原位调节热传输性能,即,在热传递的极端水平之间切换或在该范围内连续调节热导。 这种功能响应是通过优化掺入到致密和纳米多孔混合材料中的电活性聚合物的结构和拓扑来实现的,即,其中有机和无机组分在分子水平上分散并彼此化学键合,以便最有效地利用它们的固有性质。 为了实现这一目标,计算用于探索支配材料行为的基本原理,并确定针对目标功能响应的最有效分子构型。 所获得的设计原则指导材料开发和适当的化学合成路线,并通过表征所得材料的介电,机械和热传输行为进行验证。 首先,实验验证了底层材料设计概念,该概念来自基于分子模拟的概念验证研究,预测当向沉积在金属基板上的压电聚合物超薄层施加电场时,热导率增加40%,热边界电导增加6倍,并确定了底层机制。 从这些见解,蓝图的材料设计,产生最大的热传输调节行为的设计。 因此,纳米多孔聚合物-无机杂化材料被探索为由于其响应于压电致动的大应变而可能产生热传输性质的放大变化的材料。 相反,在专门设计的纳米多孔结构的大幅度驱动的应用程序进行了研究,作为可调膜的选择性过滤,病原体的检测,时间选择性采样,有针对性的药物输送,和流体流量调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Kieffer其他文献
Cs oxide aggregation in SIMS craters in organic samples for optoelectronic application
- DOI:
10.1016/j.susc.2012.04.003 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:
- 作者:
Khanh Q. Ngo;Patrick Philipp;John Kieffer;Tom Wirtz - 通讯作者:
Tom Wirtz
Polarity-induced dual room-temperature phosphorescence involving the T2 states of pure organic phosphors
涉及纯有机磷光体 T2 态的极性诱导双室温磷光
- DOI:
10.1039/d2tc02152h - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lixin Zang;Wenhao Shao;Onas Bolton;Ramin Ansari;Seong-Jun Yoon;Jung-Moo Heo;John Kieffer;Adam Matzger;Jinsang Kim - 通讯作者:
Jinsang Kim
Prevalence of chlamydia and gonorrhea in US Air Force male basic trainees
美国空军男性基础学员衣原体和淋病患病率
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Jacqueline Kate Wade;Joseph E. Marcus;John Kieffer;Korey Kasper;Joshua Smalley - 通讯作者:
Joshua Smalley
Fragility and the rate of change of the energy landscape topography
- DOI:
10.1016/j.nocx.2022.100101 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:
- 作者:
Cameran Beg;John Kieffer - 通讯作者:
John Kieffer
John Kieffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Kieffer', 18)}}的其他基金
Comparative Evaluation of Ionic Transport Mechanisms in Solid-State Electrolytes
固态电解质中离子传输机制的比较评估
- 批准号:
1610742 - 财政年份:2016
- 资助金额:
$ 29.44万 - 项目类别:
Continuing Grant
DMREF: SusChEM: Simulation-Based Predictive Design of All-Organic Phosphorescent Light-Emitting Molecular Materials
DMREF:SusChEM:基于模拟的全有机磷光发光分子材料的预测设计
- 批准号:
1435965 - 财政年份:2014
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Optimizing Ion Mobility, Chemical Stability, and Mechanical Rigidity in Composite Electrolytes
优化复合电解质中的离子淌度、化学稳定性和机械刚性
- 批准号:
1106058 - 财政年份:2011
- 资助金额:
$ 29.44万 - 项目类别:
Continuing Grant
Perturbation Codes: A New Class of Linear Convolutional Codes
扰动码:一类新的线性卷积码
- 批准号:
0830381 - 财政年份:2008
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Collaborative Research: Information Theory of Data Structures
合作研究:数据结构信息论
- 批准号:
0830457 - 财政年份:2008
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Materials World Network: Growth, Kinetics, and Morphology of Multi-Layered Organic Thin Films via Low-Energy Secondary Ion Mass Spectrometry
材料世界网络:通过低能二次离子质谱法研究多层有机薄膜的生长、动力学和形态
- 批准号:
0806867 - 财政年份:2008
- 资助金额:
$ 29.44万 - 项目类别:
Continuing Grant
Enhancing Materials Science and Engineering Curricula through Computation
通过计算加强材料科学与工程课程
- 批准号:
0633180 - 财政年份:2007
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Structural Developments in Ion-Implanted Sol-Gel Films and Resulting Glasses
离子注入溶胶-凝胶薄膜和所得玻璃的结构发展
- 批准号:
0605905 - 财政年份:2006
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
- 批准号:
0230662 - 财政年份:2001
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
- 批准号:
0072258 - 财政年份:2000
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
相似海外基金
Nanoscale Temperature Mapping and Thermal Regulation of Intracellular Dynamics
纳米级温度测绘和细胞内动力学的热调节
- 批准号:
10502123 - 财政年份:2022
- 资助金额:
$ 29.44万 - 项目类别:
Nanoscale Temperature Mapping and Thermal Regulation of Intracellular Dynamics
纳米级温度测绘和细胞内动力学的热调节
- 批准号:
10687130 - 财政年份:2022
- 资助金额:
$ 29.44万 - 项目类别:
Development of high-performance Li batteries with autonomic thermal regulation of their performance by encapsulated nanosized phase change materi
通过封装纳米相变材料开发具有自主热调节性能的高性能锂电池
- 批准号:
2599519 - 财政年份:2021
- 资助金额:
$ 29.44万 - 项目类别:
Studentship
Smart regulation of thermal infrared radiation with meta-structured metal-insulator transition
通过元结构金属-绝缘体转变智能调节热红外辐射
- 批准号:
1953803 - 财政年份:2020
- 资助金额:
$ 29.44万 - 项目类别:
Standard Grant
Re-understanding of Systemic Metabolism through Skin-mediated Thermal Regulation
通过皮肤介导的热调节重新理解全身代谢
- 批准号:
20K21620 - 财政年份:2020
- 资助金额:
$ 29.44万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Thermal regulation of a channel flow using phase change material
使用相变材料对通道流量进行热调节
- 批准号:
526769-2018 - 财政年份:2018
- 资助金额:
$ 29.44万 - 项目类别:
University Undergraduate Student Research Awards
Collaboration concerning Thermal Regulation of Biofuel Producing Microalgae using Phase Change Materials
使用相变材料对生产生物燃料的微藻进行热调节的合作
- 批准号:
513663-2017 - 财政年份:2017
- 资助金额:
$ 29.44万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Thermal Regulation of Biofuel Producing Microalgae using Phase Change Materials
使用相变材料生产生物燃料的微藻的热调节
- 批准号:
510942-2017 - 财政年份:2017
- 资助金额:
$ 29.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Therapeutic Thermal Regulation in Critical Illness
危重疾病的热调节治疗
- 批准号:
nhmrc : GNT1124421 - 财政年份:2017
- 资助金额:
$ 29.44万 - 项目类别:
Early Career Fellowships
Therapeutic Thermal Regulation in Critical Illness
危重疾病的热调节治疗
- 批准号:
nhmrc : 1124421 - 财政年份:2017
- 资助金额:
$ 29.44万 - 项目类别:
Early Career Fellowships














{{item.name}}会员




