Cochlea-inspired Wireless Compressive Sensing Architectures for Real-time Feedback Control Applications

用于实时反馈控制应用的受耳蜗启发的无线压缩传感架构

基本信息

项目摘要

Feedback control systems are widely used to control the performance of dynamic systems found in mechanical (e.g., flight control of aircraft) and civil engineering (e.g., response mitigation of buildings during earthquakes). Wireless communication has been proposed as a communication medium for the sensors, actuators and controllers that make up the feedback control system. While wireless communication may dramatically reduce the costs associated with the manufacture of control systems, they simultaneously introduce a new set of technical challenges including power limitations, lower communication speeds and reduced system robustness. This project studies how the human cochlea and the auditory nervous system acquires, communicates and processes acoustic information with the aim of emulating its operational principles in wireless feedback control systems. The power-efficient and real-time processing architectures found in biological neural circuits promise to resolve the long-standing performance bottlenecks associated with wireless telemetry in feedback control applications. The impact this research would have on the US economy is enormous given the prevalence of feedback control systems used daily by society. In addition, the project introduces innovative engineering coursework in bio-inspired engineering and engages middle-school students from underrepresented groups to motivate them to pursue STEM careers. The overarching goal of the research effort is to apply the methods of neural pulse train coding from the field of neurobiology to resolve the power consumption, speed, and robustness challenges associated with wireless communication in networked feedback control systems. The team will study the sensory neural principles of the mammalian cochlea and will use these principles as the functional basis of an energy-efficient wireless sensor that modulates sensor data into digital pulse train signals communicated directly to the radio frequency spectrum using a code division multiple access (CDMA) communication scheme. The project will also study common neural motifs to serve as functional blocks for the mapping of feedback control laws into complex neural circuits that process the spike train signals generated by the cochlea-inspired wireless sensor nodes. The result will be a biologically inspired wireless feedback control system that implements a compressive sensing strategy at the sensing front-end and processes spike train signals in real-time on the system back-end using neural circuits trained to implement desired feedback control laws. The intellectual significance of the work is that it breaks new ground by adopting the operational principles of biological neural circuits to formalize a new design paradigm for engineered feedback control systems.
反馈控制系统被广泛用于控制机械(例如飞机的飞行控制)和土木工程(例如,地震期间建筑物的响应缓解)中发现的动态系统的性能。已经提出了无线通信作为构成反馈控制系统的传感器,执行器和控制器的通信媒介。 尽管无线通信可能会大大降低与控制系统的制造相关的成本,但它们同时引入了一系列新的技术挑战,包括功率限制,较低的通信速度和降低的系统鲁棒性。 该项目研究人耳蜗和听觉神经系统如何获取,交流和处理声学信息,以模仿其在无线反馈控制系统中的运行原理。 生物神经回路中发现的强力和实时处理体系结构有望解决反馈控制应用中与无线遥测相关的长期性能瓶颈。 鉴于社会每天使用的反馈控制系统的普遍性,这项研究对美国经济的影响是巨大的。 此外,该项目还在生物启发的工程学中介绍了创新的工程课程,并吸引了来自代表性不足的团体的中学生,以激励他们从事STEM职业。 研究工作的总体目标是应用神经生物学领域的神经脉冲火车编码方法来解决与网络反馈控制系统中无线通信相关的功耗,速度和鲁棒性挑战。 该团队将研究哺乳动物耳蜗的感官神经原理,并将使用这些原理作为能源有效的无线传感器的功能基础,该功能基础将传感器数据调节到数字脉冲序列中,该传感器数据使用代码部门多重访问(CDMA)通信方案直接通信到无线电频谱。该项目还将研究常见的神经图案,以作为将反馈控制定律映射到复杂的神经回路中的功能块,这些神经回路处理由耳蜗启发的无线传感器节点产生的尖峰训练信号。结果将是一个具有生物学启发的无线反馈控制系统,该系统在传感前端上实现压缩感应策略,并使用经过培训的神经回路实时在系统后端上实现尖峰火车信号,以实现所需的反馈控制法。 这项工作的智力意义在于,它通过采用生物神经回路的操作原理来打破新的基础,以使工程反馈控制系统的新设计范式形式化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerome Lynch其他文献

Jerome Lynch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerome Lynch', 18)}}的其他基金

EAGER: Sensors in a Shoebox: Engaging Detroiters in Analyzing and Meeting Community Needs
EAGER:鞋盒中的传感器:让底特律人参与分析和满足社区需求
  • 批准号:
    1637232
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Enhanced Structural Health Monitoring of Civil Infrastructure Systems by Observing and Controlling Loads using Cyber-Physical Systems
CPS:协同:协作研究:通过使用网络物理系统观察和控制负载来增强民用基础设施系统的结构健康监测
  • 批准号:
    1446521
  • 财政年份:
    2015
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
U.S.-Japan Workshop on Bio-Inspired Engineering of Next-Generation Sensors and Actuators; Spring 2011
美日下一代传感器和执行器仿生工程研讨会;
  • 批准号:
    1064145
  • 财政年份:
    2011
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
PECASE: Nanoengineered Sensing Skins for Structural Health Monitoring - An Integrated Research and Education Career Experience
PECASE:用于结构健康监测的纳米工程传感皮肤 - 综合研究和教育职业体验
  • 批准号:
    0846256
  • 财政年份:
    2009
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
U.S.-Germany Planning Visit: Structural Health Monitoring Sensors for Offshore Wind Turbines
美德计划访问:海上风力发电机结构健康监测传感器
  • 批准号:
    0820607
  • 财政年份:
    2008
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Sensor Fusion for Comprehensive Health Monitoring of Complex Infrastructure Systems - An International Testbed Opportunity
合作研究:用于复杂基础设施系统全面健康监测的传感器融合——国际测试平台机会
  • 批准号:
    0726812
  • 财政年份:
    2007
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Sensors: Carbon Nanotube-Based Wireless Sensors for Strain and Corrosion Monitoring of Structures
传感器:用于结构应变和腐蚀监测的碳纳米管无线传感器
  • 批准号:
    0528867
  • 财政年份:
    2005
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant

相似海外基金

ECCS-EPSRC: NeuroComm: Brain-Inspired Wireless Communications -- From Theoretical Foundations to Implementation for 6G and Beyond
ECCS-EPSRC:NeuroComm:受大脑启发的无线通信——从理论基础到 6G 及更高版本的实施
  • 批准号:
    2335876
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
ECCS-EPSRC: NeuroComm: Brain-Inspired Wireless Communications -- From Theoretical Foundations to Implementation for 6G and Beyond
ECCS-EPSRC:NeuroComm:受大脑启发的无线通信——从理论基础到 6G 及更高版本的实施
  • 批准号:
    EP/X011852/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Cephalopod-Inspired Bioelectronic Control of Cellular Signaling
受头足类动物启发的细胞信号生物电子控制
  • 批准号:
    10246105
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
CAREER: Towards Metamaterial-inspired Networking for Wireless Devices in Extreme Environments
职业:在极端环境中实现受超材料启发的无线设备网络
  • 批准号:
    1652502
  • 财政年份:
    2017
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
RUI: Bio-Inspired Architectures Enabling Real-Time Feedback Control in Wireless Sensing and Actuating Networks
RUI:仿生架构在无线传感和驱动网络中实现实时反馈控制
  • 批准号:
    1662655
  • 财政年份:
    2017
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了