RUI: Bio-Inspired Architectures Enabling Real-Time Feedback Control in Wireless Sensing and Actuating Networks

RUI:仿生架构在无线传感和驱动网络中实现实时反馈控制

基本信息

  • 批准号:
    1662655
  • 负责人:
  • 金额:
    $ 13.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to use strategies found in biological sensory circuits to create practical wireless networked control systems for minimizing damage to buildings and other critical civil infrastructure during events such as hurricanes, tornadoes, and earthquakes. Critical civil infrastructure, such as bridges and buildings, are highly vulnerable to extreme load scenarios, such as high winds or earthquakes. Failure of such structures can have a significantly negative impact on society, both through loss of productivity as well as potential loss of life. To guard against these failures during extreme events, the project will use integrated feedback control, in which distributed sensors detect building motion and wirelessly send measurements to one or more processing nodes, which then use that data to command strategically located actuators to generate counteracting forces. Practical wireless implementation of such systems may be difficult due data-overload on communication links and processing nodes, and by time delays of signals traveling over the wireless links. The goal of this project is to overcome these problems using data compression strategies and other advantageous adaptations found in sensory loops in the biological central nervous system. This project will be carried out at Hope College, a Primarily Undergraduate Institution, and will introduce Hope College students to cutting-edge research in structural engineering. Wireless feedback control systems are challenged by constraints such as computation inundation at nodes and communication latencies, which have to date limited real-time control capabilities and large-scale deployments on civil infrastructure. In contrast, biological sensory systems are able to robustly react and adapt to their environment in ways that outperform engineering systems. The goal for this project is to draw inspiration from these biological mechanisms and develop a bio-inspired sensing and actuating architecture that utilizes front-end signal processing and simplistic information integration so as to streamline communication and enable real-time control. This will be achieved by utilizing optimal control theory as well as iterative training techniques to develop synaptic weights between layers of sensing and actuating nodes. The project will also study the synaptic plasticity exhibited by biological neural networks and integrate this behavior into the bio-inspired control architecture. The result will be an adaptive, bio-inspired control architecture that will be capable of real-time feedback control which will alleviate the challenges experienced in traditional wireless control systems. This architecture will be validated in hardware on a small scale structure that is subject to seismic excitation. By demonstrating an alternative sensing and actuating paradigm based on principles employed by the biological nervous system, the project will remove the constraints of traditional Nyquist sampling on wireless sensor networks while still maintaining effective control capabilities. This will move the field in a vertical direction as it will reduce current challenges of communication latencies and computation inundation, thus enabling real-time feedback control using wireless telemetry.
该项目的目标是使用生物传感电路中的策略来创建实用的无线网络控制系统,以最大限度地减少飓风,龙卷风和地震等事件对建筑物和其他关键民用基础设施的破坏。关键的民用基础设施,如桥梁和建筑物,非常容易受到极端负载情况的影响,如强风或地震。这种结构的失败可能对社会产生重大的负面影响,既会损失生产力,也可能造成生命损失。为了在极端事件期间防止这些故障,该项目将使用集成反馈控制,其中分布式传感器检测建筑物运动并将测量结果无线发送到一个或多个处理节点,然后使用该数据命令战略定位的致动器产生反作用力。由于通信链路和处理节点上的数据过载,以及由于在无线链路上传播的信号的时间延迟,这种系统的实际无线实现可能是困难的。该项目的目标是利用数据压缩策略和生物中枢神经系统感觉回路中发现的其他有利适应来克服这些问题。该项目将在私立本科院校希望学院开展,并将向希望学院的学生介绍结构工程方面的前沿研究。无线反馈控制系统受到诸如节点处的计算淹没和通信延迟等约束的挑战,这些约束迄今为止具有有限的实时控制能力和在民用基础设施上的大规模部署。相比之下,生物感觉系统能够以优于工程系统的方式对环境做出强有力的反应和适应。该项目的目标是从这些生物机制中汲取灵感,并开发一种生物启发的传感和致动架构,该架构利用前端信号处理和简单的信息集成,以简化通信并实现实时控制。 这将通过利用最优控制理论以及迭代训练技术来开发感测和致动节点层之间的突触权重来实现。 该项目还将研究生物神经网络所表现出的突触可塑性,并将这种行为整合到生物启发的控制架构中。 其结果将是一个自适应的,生物启发的控制架构,将能够实时反馈控制,这将减轻传统的无线控制系统所面临的挑战。 这种架构将在一个小规模的结构,是受地震激励的硬件验证。 通过展示一种基于生物神经系统原理的替代传感和驱动范例,该项目将消除传统奈奎斯特采样对无线传感器网络的限制,同时仍然保持有效的控制能力。 这将在垂直方向上移动场,因为它将减少当前通信延迟和计算淹没的挑战,从而实现使用无线遥测的实时反馈控制。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Utilizing the Particle Swarm Optimization Algorithm for Determining Control Parameters for Civil Structures Subject to Seismic Excitation
  • DOI:
    10.3390/a14100292
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    C. A. Peckens;Andrea Alsgaard;C. Fogg;Mary C. Ngoma;Clara Voskuil
  • 通讯作者:
    C. A. Peckens;Andrea Alsgaard;C. Fogg;Mary C. Ngoma;Clara Voskuil
Experimental validation of a proposed bio-inspired control algorithm for civil infrastructure
所提出的民用基础设施仿生控制算法的实验验证
Bio-inspired iterative learning technique for more effective control of civil infrastructure
仿生迭代学习技术可更有效地控制民用基础设施
  • DOI:
    10.1117/12.2514334
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peckens, Courtney;Fogg, Camille
  • 通讯作者:
    Fogg, Camille
High-speed data acquisition and computing for real-time active control of civil structures subject to seismic base excitation
高速数据采集和计算,用于地震基础激励下土木结构的实时主动控制
Exploration of the use of a proportional-integral-derivative controller for mitigation of seismic base excitation in civil structures
使用比例积分微分控制器减轻土木结构地震基础激励的探索
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Courtney Peckens其他文献

Courtney Peckens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Courtney Peckens', 18)}}的其他基金

Scholarships, Services, and a Framework of Programmatic Belonging Cues to Improve Undergraduate Student Success in Engineering Majors
奖学金、服务和程序化归属感框架可提高本科生在工程专业的成功
  • 批准号:
    2029372
  • 财政年份:
    2020
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Standard Grant

相似国自然基金

骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗 根分叉病变的临床疗效研究
  • 批准号:
    2024JJ9542
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态 光散射免疫传感检测平台的建立及机制研究
  • 批准号:
    Q24C200014
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
  • 批准号:
    LY23E080003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
  • 批准号:
    22005126
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
6-BIO 抗肝脏衰老的作用与作用机制研究
  • 批准号:
    19ZR1438800
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
  • 批准号:
    41877481
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Continuing Grant
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Discovery Projects
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
  • 批准号:
    2329856
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Standard Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track M: Nature Inspired Bio-manufactured Terminal Hydroxylated Fatty Acid Copolyesters
NSF 融合加速器轨道 M:受自然启发的生物制造末端羟基化脂肪酸共聚酯
  • 批准号:
    2344366
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Standard Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
  • 批准号:
    2422277
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
  • 批准号:
    2339475
  • 财政年份:
    2024
  • 资助金额:
    $ 13.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了