Automated Computational Modeling and Adaptive Control for Critical Patient Resuscitation

危重病人复苏的自动计算建模和自适应控制

基本信息

  • 批准号:
    1437532
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

Physicians face enormous challenges in making decisions to resuscitate and stabilize critically ill and injured patients based on rapidly changing vital signs. This project will investigate automated processing of physiological measurements, using high-speed computational models to provide near-instantaneous treatment recommendations to stabilize blood pressure, cardiac output and renal function. Additionally, feedback control algorithms will be developed capable of automatically regulating the administration of drugs and fluids to optimize critical care, subject to the specific physiological state of the patient. This advance in continually monitored and adjusted personalized treatment is expected to benefit patients suffering from trauma, burn, infection, and shock. The resulting decision assistance system and adaptive closed-loop drug and fluid delivery system will greatly benefit the accuracy and reliability of critical care treatments, resulting in increased survival rates and improved therapeutic outcomes. The project will develop adaptive models of cardio-vascular and fluid response, subject to the injection of vasoactive drugs and fluid therapy. The corresponding drug and fluid administration problem is challenged by a changing physiological dynamic response and a significant time-delay in the response due to drug absorption. Multi-model observers will be investigated to provide instantaneous dosage recommendations to doctors to achieve targeted values of blood pressure, cardiac output and urinary output. The models will compute the patient's responsiveness to various drugs and fluids, and will self-adapt to varying responses to treatment from patient-to-patient and within a single patient over time (intra-patient and inter-patient variability). Detection algorithms will be developed to identify potential sudden changes in the patient's physiological response, such as the presence of an internal hemorrhage, and alert the doctors. Additionally, model-based adaptive and robust closed-loop drug infusion algorithms will be developed to automate the drug administration process for optimized patient resuscitation. The research team will collaborate with medical experts that will provide physiological data from animal experiments and will assist in the evaluation of the developed models and decision support algorithms.
医生在根据快速变化的生命体征做出复苏和稳定危重病人和受伤病人的决定时面临着巨大的挑战。该项目将研究生理测量的自动化处理,使用高速计算模型提供近乎瞬时的治疗建议,以稳定血压、心输出量和肾功能。此外,将开发反馈控制算法,能够根据患者的特定生理状态自动调节药物和液体的管理,以优化重症监护。这种持续监测和调整个性化治疗的进展有望使遭受创伤、烧伤、感染和休克的患者受益。由此产生的决策辅助系统和自适应闭环药物和流体输送系统将极大地提高重症监护治疗的准确性和可靠性,从而提高生存率和改善治疗效果。该项目将在注射血管活性药物和液体治疗的情况下,开发心血管和液体反应的适应性模型。相应的药物和液体给药问题受到不断变化的生理动态反应和由于药物吸收引起的反应的显着时间延迟的挑战。将研究多模型观测者,为医生提供瞬时剂量建议,以达到血压、心输出量和尿输出量的目标值。这些模型将计算患者对各种药物和液体的反应,并将自适应不同患者之间和单个患者对治疗的不同反应(患者内部和患者之间的变异性)。检测算法将被开发出来,以识别患者生理反应的潜在突然变化,例如内出血的存在,并提醒医生。此外,将开发基于模型的自适应和鲁棒闭环药物输注算法,以实现药物给药过程的自动化,以优化患者复苏。研究小组将与医学专家合作,后者将提供动物实验的生理数据,并协助评估所开发的模型和决策支持算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karolos Grigoriadis其他文献

Multi-Physics Modeling of Above-Ground Electromagnetic Inspection on Underground Pipeline
  • DOI:
    10.1007/s10921-025-01227-4
  • 发表时间:
    2025-07-03
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Ahmed Khaled;Rami El-Haibe;Karolos Grigoriadis;Yingjie Tang;Matthew Franchek;Keng Yap;Debartha Bag
  • 通讯作者:
    Debartha Bag
Correction to: Substrate temperature estimation and control in advanced MOCVD process for superconductor manufacturing

Karolos Grigoriadis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karolos Grigoriadis', 18)}}的其他基金

Model-Based Real-Time Engine Diagnostics, Adaptation And Optimization
基于模型的实时发动机诊断、适应和优化
  • 批准号:
    1235461
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Scholarships for the Accelerated B.S./Graduate (FastGrad) Degree in Engineering
工程学学士/研究生(FastGrad)加速学位奖学金
  • 批准号:
    0728686
  • 财政年份:
    2007
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Hysteresis Compensation Using Linear Parameter Varying Control Methods
合作研究:使用线性参数变化控制方法的磁滞补偿
  • 批准号:
    0602508
  • 财政年份:
    2006
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
A Unified Framework for Robust Parameter Varying Control with Applications to Engine Control Problems
鲁棒参数变化控制的统一框架及其在发动机控制问题中的应用
  • 批准号:
    9713724
  • 财政年份:
    1998
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Control and Integrated Design of Mechanical Systems via Linear Matrix Inequality Based Methods
职业:通过基于线性矩阵不等式的方法进行机械系统的控制和集成设计
  • 批准号:
    9702733
  • 财政年份:
    1997
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Computational Modeling Core
计算建模核心
  • 批准号:
    10551707
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
  • 批准号:
    2345256
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
REU Site: Computational Modeling Serving Portland
REU 站点:为波特兰服务的计算模型
  • 批准号:
    2244551
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
CAREER: Generative Physical Modeling for Computational Imaging Systems
职业:计算成像系统的生成物理建模
  • 批准号:
    2239687
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Computational modeling of IP3 production in neuronal dendritic spines based on the distribution pattern of PIP2 and mGluRs
基于 PIP2 和 mGluR 分布模式的神经元树突棘中 IP3 产生的计算模型
  • 批准号:
    23K19411
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
Understanding of cholesterol transporter mechanisms via HS-AFM and computational modeling
通过 HS-AFM 和计算模型了解胆固醇转运机制
  • 批准号:
    22KF0153
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了