Development of an Asymptotically-Reduced, Multiscale Model of Turbulent Boundary Layer Dynamics at Extreme Reynolds Numbers

极限雷诺数下湍流边界层动力学的渐近简化多尺度模型的开发

基本信息

  • 批准号:
    1437851
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

1437851Chini, Gregory The goal of the proposed study is to use a combination of theory and unique experiments to develop a new approach to modeling turbulent flows in the boundary layer. The capacity to understand, predict, and control turbulent boundary layer dynamics is important for a multitude of technological applications and scientifically important processes. Turbulence is prevalent in the world we live in and in the industry. Success in this research could impact any industrial process that involves turbulent flow, with consequent societal benefits in the form of new products, improved energy efficiency, quieter systems, etc. Problems related to geophysical and astrophysical flows could also be approached in a new, more accurate way. The educational plan involves the participation of both graduate and undergraduate students.The main goal of the proposed research is to develop a multiscale Partial Differential Equation (PDE) model of turbulent boundary layer dynamics through the integrated useof high Reynolds number (Re) asymptotics and well-resolved high-Re experiments. By its very nature, the model development process will elucidate the so-called "inner/outer" interaction, as these are linked to boundary layer evolution as Re tends to infinity. In addition, numerical solutions of the multiscale PDEs promise to be less costly than direct numerical simulations (DNS) of the primitive Navier?Stokes (NS) equations from which they are derived, thereby enabling simulations in otherwise inaccessible parameter regimes. The proposed model will be distinct from other recent efforts, because the model retains a first principles foundation, with no reliance on system inputs or phenomenological assumptions. The multiscale analysis on which the model is based brings together recent advances in the asymptotic analysis of turbulent geophysical flows, of "exact coherent structures" in high-Re shear flows, and of the mean dynamics in canonical turbulent wall-flows. The target model is a closed multiscale PDE system that is self-consistently and systematically simplified relative to the primitive NS equations. This critical scaling information is only accessible through well-resolved, high-Re experiments. In this regard, the Univ. of New Hampshire Flow Physics Facility (FPF), which is the world's largest flow physics quality boundary layer wind tunnel, allows high-resolution measurements of velocity and vorticity at extreme Reynolds numbers.
小行星1437851 该研究的目标是使用理论和独特的实验相结合,开发一种新的方法来模拟边界层中的湍流。理解、预测和控制湍流边界层动力学的能力对于许多技术应用和科学上重要的过程是重要的。动荡是普遍存在于我们生活的世界和行业。这项研究的成功可能会影响任何涉及湍流的工业过程,从而产生新产品,提高能源效率,更安静的系统等形式的社会效益。本研究的主要目的是综合利用高雷诺数(Reynolds number,Re)渐近性和高分辨率实验,建立湍流边界层动力学的多尺度偏微分方程(Partial Differential Equation,PDE)模型。就其本质而言,模型开发过程将阐明所谓的“内/外”相互作用,因为这些相互作用与Re趋于无穷大时的边界层演变有关。此外,数值解的多尺度偏微分方程的承诺是成本较低的原始Navier?斯托克斯(NS)方程,他们来自,从而使模拟在其他无法访问的参数制度。所提出的模型将不同于其他最近的努力,因为该模型保留了第一原理的基础,不依赖于系统输入或现象学假设。该模型的基础上的多尺度分析汇集了最近的进展,在渐近分析的湍流地球物理流,“精确相干结构”在高Re剪切流,和规范的湍流壁流的平均动态。目标模型是一个封闭的多尺度PDE系统,相对于原始NS方程是自洽的和系统的简化。 这种关键的缩放信息只能通过良好的解决,高Re实验。在这方面,新罕布什尔州大学的流动物理设施(FPF),这是世界上最大的流动物理质量边界层风洞,允许在极端雷诺数的速度和涡度的高分辨率测量。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A uniform momentum zone–vortical fissure model of the turbulent boundary layer
  • DOI:
    10.1017/jfm.2018.769
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Bautista;A. Ebadi;C. White;G. Chini;J. Klewicki
  • 通讯作者:
    J. Bautista;A. Ebadi;C. White;G. Chini;J. Klewicki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Chini其他文献

Gregory Chini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Chini', 18)}}的其他基金

CMG Collaborative Research: Multiscale Modeling of the Coupling between Langmuir Turbulence and Submesoscale Variability in the Oceanic Mixed Layer
CMG 合作研究:海洋混合层朗缪尔湍流与次尺度变化耦合的多尺度建模
  • 批准号:
    0934827
  • 财政年份:
    2009
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear Systems via a-priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动力学描述
  • 批准号:
    0928098
  • 财政年份:
    2009
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
CAREER: Langmuir Circulation--Internal Wave Interactions
职业:朗缪尔环流——内波相互作用
  • 批准号:
    0348981
  • 财政年份:
    2004
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant

相似海外基金

Asymptotically Improved Solvers for the Helmholtz Equation
亥姆霍兹方程的渐近改进求解器
  • 批准号:
    RGPIN-2021-02613
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical relativity and asymptotically hyperbolic manifolds
数学相对论和渐近双曲流形
  • 批准号:
    RGPIN-2017-04896
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotically Improved Solvers for the Helmholtz Equation
亥姆霍兹方程的渐近改进求解器
  • 批准号:
    RGPIN-2021-02613
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Numerical Analysis of Asymptotically Compatible Discretization of Nonlocal Models
非局部模型渐近兼容离散化的数学和数值分析
  • 批准号:
    2012562
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Continuing Grant
Construction and uniqueness of asymptotically symmetric Einstein spaces
渐近对称爱因斯坦空间的构造和唯一性
  • 批准号:
    20K03584
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical relativity and asymptotically hyperbolic manifolds
数学相对论和渐近双曲流形
  • 批准号:
    RGPIN-2017-04896
  • 财政年份:
    2020
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical relativity and asymptotically hyperbolic manifolds
数学相对论和渐近双曲流形
  • 批准号:
    RGPIN-2017-04896
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical relativity and asymptotically hyperbolic manifolds
数学相对论和渐近双曲流形
  • 批准号:
    RGPIN-2017-04896
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Discovery Grants Program - Individual
Construction and Application of new Cutoff Scheures for Asymptotically Safe Quantum Gravity
渐近安全量子引力新截止方案的构建与应用
  • 批准号:
    411018316
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grants
Asymptotically Isometric Mechanics
渐近等距力学
  • 批准号:
    1822439
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了