Fundamental Understanding of Ionic Insertion/Extraction Mechanism of Organic Electrodes
有机电极离子嵌入/脱嵌机理的基本理解
基本信息
- 批准号:1438493
- 负责人:
- 金额:$ 28.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Collaborative Research: Fundamental Understanding of Ionic Insertion/Extraction Mechanism on Organic ElectrodesCollaborative:Principal Investigator: Huixin He (Lead)Number: 1438493Institution: Rutgers University - NewarkPrincipal Investigator: Chunsheng WangNumber: 1438198Institution: University of Maryland, College ParkThere is a strong need to develop batteries for storage of electricity that are inexpensive and use sustainable materials. Rechargeable batteries based on organic materials such as crystalline salts of croconic acid are potentially inexpensive and can be fabricated from sustainable resources, but suffer from low power and eventual failure after many re-charging cycles. The goal of this project is to develop a fundamental understanding of ion movement during the charging cycle in these materials. This information can then be used to rationally design organic batteries with improved energy capacity and long cycle life. The approach will make use of advanced techniques for synthesis and performance characterization of organic nanowire batteries that will be complimented by powerful molecular models to predict ion movement. An interdisciplinary team from two universities will be involved in this research effort. The interdisciplinary nature of this research will provide students at both the graduate and undergraduate levels with training in the high-tech fields electrochemical energy systems, nanotechnology, and computational modeling. To broaden participation, activities include an outreach program to provide high school students with a summer research experience, and a workshop for science teachers on sustainable energy topics from school districts in low-income areas of New Jersey.Technical DescriptionOrganic materials for electrochemical energy storage are potentially inexpensive and can be fabricated from sustainable resources, but suffer from low energy density and cycling failure. The potential to overcome these limitations has not been realized, due in part to an incomplete knowledge of ion insertion/extraction processes within the organic materials. The overall goal of this project is to develop a fundamental understanding of the ion insertion and extraction mechanism by elucidating the relationships for the thermodynamics and kinetics of ion insertion/extraction processes for lithium, magnesium, and sodium ions. These relationships will be obtained through density functional theory (DFT) and molecular modeling, in situ electrochemical characterization measurements, and characterization of organic crystal structures. This will approach will be complimented by synthesis and mechanical strain evolution measurements of crystalline croconic acid disodium salt nanowires of controlled size and shape. The fundamental understanding gained from this research can potentially enable the rational design organic materials ordered at the nanoscale and microscale for sustainable organic batteries with high energy density and long cycle life. An interdisciplinary team from two universities will be involved in this research effort. The interdisciplinary nature of this research will provide students at both the graduate and undergraduate levels with training in electrochemical energy systems, nanotechnology, and computational modeling. To broaden participation, activities include an outreach program to provide high school students with a summer research experience, and a workshop for science teachers on sustainable energy topics from school districts in low-income areas of New Jersey.
标题:合作研究:有机电极上离子插入/提取机制的基本理解合作:首席研究员:何惠新(负责人)编号:1438493机构:罗格斯大学-纽瓦克首席研究员:王春生编号:1438198机构:马里兰大学学院公园迫切需要开发用于存储电力的电池那个 价格便宜并且使用可持续材料。 基于克罗康酸结晶盐等有机材料的可充电电池可能价格低廉,并且可以用可持续资源制造,但其功率较低,并且在多次充电循环后最终会出现故障。 该项目的目标是对这些材料充电循环期间的离子运动有一个基本的了解。然后可以利用这些信息来合理设计具有更高能量容量和更长循环寿命的有机电池。 该方法将利用先进的有机纳米线电池的合成和性能表征技术,并辅以强大的分子模型来预测离子运动。 来自两所大学的跨学科团队将参与这项研究工作。 这项研究的跨学科性质将为研究生和本科生提供电化学能源系统、纳米技术和计算建模等高科技领域的培训。 为了扩大参与范围,活动包括为高中生提供暑期研究经验的外展计划,以及为新泽西州低收入地区学区的科学教师举办可持续能源主题研讨会。技术说明用于电化学储能的有机材料可能价格低廉,并且可以用可持续资源制造,但存在能量密度低和循环故障的问题。 克服这些限制的潜力尚未实现,部分原因是对有机材料内离子插入/提取过程的了解不完整。该项目的总体目标是通过阐明锂、镁和钠离子的离子插入/提取过程的热力学和动力学关系,形成对离子插入和提取机制的基本了解。 这些关系将通过密度泛函理论 (DFT) 和分子建模、原位电化学表征测量以及有机晶体结构表征来获得。这种方法将得到尺寸和形状受控的结晶克康酸二钠盐纳米线的合成和机械应变演化测量的补充。 从这项研究中获得的基本认识有可能使合理设计纳米级和微米级有机材料成为可能,从而获得具有高能量密度和长循环寿命的可持续有机电池。 来自两所大学的跨学科团队将参与这项研究工作。 这项研究的跨学科性质将为研究生和本科生提供电化学能源系统、纳米技术和计算建模方面的培训。 为了扩大参与范围,活动包括为高中生提供暑期研究经验的外展计划,以及为新泽西州低收入地区学区的科学教师举办关于可持续能源主题的研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huixin He其他文献
Monitoring the Electrochemical Transformation of an Azobenzene-Terminated Alkanethiolate Monolayer at Gold by Chemical Force Microscopy
通过化学力显微镜监测金上偶氮苯封端的烷硫醇单层的电化学转化
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Zhongyun Wu;D. Dong;Hua Zhang;Huixin He;Zhongfan Liu - 通讯作者:
Zhongfan Liu
A flexible memory with low-voltage and high-operation speed using an Al2O3/poly(α-methylstyrene) gate stack on a muscovite substrate
在白云母基板上使用 Al2O3/聚(α-甲基苯乙烯)栅堆叠的低电压和高运行速度的柔性存储器
- DOI:
10.1039/c8tc05932b - 发表时间:
2019-02 - 期刊:
- 影响因子:6.4
- 作者:
Huixin He;Waner He;Jiaying Mai;Jiali Wang;Zhengmiao Zou;Dao Wang;Jiajun Feng;Aihua Zhang;Zhen Fan;Sujuan Wu;Min Zeng;Jinwei Gao;Guofu Zhou;Xubing Lu;J.-M. Liu - 通讯作者:
J.-M. Liu
Force Titration of a Carboxylic Acid Terminated Self-Assembled Monolayer Using Chemical Force Microscopy
使用化学力显微镜对羧酸封端的自组装单分子层进行力滴定
- DOI:
10.1080/10587259708032258 - 发表时间:
1997 - 期刊:
- 影响因子:0.7
- 作者:
Huixin He;Chunzeng Li;Jie;T. Mu;Lei Wang;Hongquan Zhang;Zhangrui Liu - 通讯作者:
Zhangrui Liu
Modifications of autophagy influenced the Alzheimer-like changes in H-SY5Y cells promoted by ultrafine black carbon
自噬的修饰影响了超细炭黑促进的 H-SY5Y 细胞中的阿尔茨海默样变化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:8.9
- 作者:
Yu Shang;Mingyuan Liu;Tiantian Wang;Lu Wang;Huixin He;Yufang Zhong;Guangren Qian;Jing An;Tong Zhu;Xinghua Qiu;Jing Shang;Yingjun Chen - 通讯作者:
Yingjun Chen
グラフェン材料の開発と応用展開
石墨烯材料的开发与应用
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Muhammad Sohail Ahmad;Huixin He;Yuta Nishina;仁科勇太;仁科勇太 - 通讯作者:
仁科勇太
Huixin He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huixin He', 18)}}的其他基金
Novel Self Assembly of siRNA for Efficient and Safe Delivery
新型 siRNA 自组装技术可实现高效、安全的递送
- 批准号:
0933966 - 财政年份:2009
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
A Sensitive Molecular Detection Platform Based on Self-Assembled Conducting Polymer Nanojunctions in a Carbon Nanotube Network
基于碳纳米管网络中自组装导电聚合物纳米结的灵敏分子检测平台
- 批准号:
0750201 - 财政年份:2008
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2427215 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246864 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246863 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Development of innovative ionic liquid DDS based on understanding of in vivo dynamics of ionic liquids
基于对离子液体体内动力学的了解开发创新离子液体 DDS
- 批准号:
23H03746 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312001 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2208744 - 财政年份:2022
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Understanding electronic and ionic interfaces in core-shell silicon anodes
了解核壳硅阳极中的电子和离子界面
- 批准号:
572985-2022 - 财政年份:2022
- 资助金额:
$ 28.3万 - 项目类别:
University Undergraduate Student Research Awards
RII Track-4:NSF: Atomic-Scale Understanding of the Self-Healing Mechanisms of Ionic Polymers
RII Track-4:NSF:离子聚合物自我修复机制的原子尺度理解
- 批准号:
2132055 - 财政年份:2022
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Understanding and Controlling Ionic Behaviors in Heterostructured Metal-Organic-Frameworks for Selective Magnesium Ion Transport
了解和控制异质结构金属有机框架中的离子行为以实现选择性镁离子传输
- 批准号:
2126923 - 财政年份:2021
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant