Reciprocal Organizational Architecture of Human Brain Function
人脑功能的交互组织架构
基本信息
- 批准号:1439051
- 负责人:
- 金额:$ 29.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how different brain regions work together is fundamental to the understanding of brain functions in both health and diseases. Segregation and integration is a general principle of the brain's functional architecture. The diverse range of human brain functions emerges from and is realized by the interaction of multiple concurrent neural processes, each of which is spatially distributed across specific structural substrate of brain areas. A fundamental question in cognitive neuroscience is how to robustly and faithfully reconstruct concurrent functional networks from functional magnetic resonance imaging (fMRI) data and quantitatively measure their network-level interactions. Dr. Tianming Liu of University of Georgia will develop novel computational methods to investigate how different brain regions form distinctive networks. Using the publicly available Human Connectome Project (HCP) fMRI datasets, Dr. Liu will not only develop and evaluate a novel theory of organizational architecture to explain human brain function but also produce a set of freely available software tools for analyzing brain network activity. Through this project, Dr. Liu will integrate research into educational and outreach activities. The novel educational materials generated from this project will contribute to cultivate the next generation of scientists. Dr. Liu plans to employ innovative dictionary learning methods to sparsely represent whole-brain fMRI signals, where the time series of each over-complete basis dictionary represents the functional activities of a brain network and its corresponding reference weight vector stands for the spatial map of this brain network. This project aims to (1) identify and characterize a large number of reproducible and robust functional networks, including both task-evoked and resting state networks, across the HCP data; (2) explore to what extent these task-evoked and resting state brain networks overlap spatially with each other; (3) test the hypothesis that cognitive brain functions are realized by hybrid combinations of reciprocally localized highly-heterogamous regions and highly-specialized regions. Collectively, this project will contribute novel tools and insights for understanding intra- and inter-network interactions, which are expected to benefit a variety of cognitive neuroscience and neural engineering studies.
了解不同的大脑区域是如何共同工作的,对于了解健康和疾病中的大脑功能是基本的。分离和整合是大脑功能结构的一般原则。人类大脑功能的多样性是由多个并行的神经过程相互作用产生并实现的,每个神经过程在空间上分布在特定的大脑区域结构底物上。认知神经科学的一个基本问题是如何从功能磁共振成像(FMRI)数据中稳健地、忠实地重建并发功能网络,并定量地测量它们之间的网络级别的相互作用。佐治亚大学的刘天明博士将开发新的计算方法,研究不同大脑区域如何形成不同的网络。使用公开可用的人类连接计划(HCP)功能磁共振数据集,刘博士不仅将开发和评估一种新的组织架构理论来解释人类大脑功能,还将开发一套免费提供的软件工具来分析大脑网络活动。通过这个项目,刘博士将把研究融入教育和推广活动中。该项目产生的新颖教育材料将有助于培养下一代科学家。刘博士计划采用创新的词典学习方法稀疏地表示全脑fMRI信号,其中每个过完备基础词典的时间序列代表大脑网络的功能活动,其对应的参考权重向量代表这个大脑网络的空间地图。该项目的目标是(1)识别和表征大量可重复性和健壮的功能网络,包括任务诱发和休息状态网络,跨越HCP数据;(2)探索这些任务诱发和休息状态脑网络在空间上相互重叠的程度;(3)检验认知大脑功能是通过相互定位的高度异性恋区域和高度专业化区域的混合组合实现的假设。总体而言,该项目将为理解网络内部和网络间的相互作用贡献新的工具和见解,预计将有助于各种认知神经科学和神经工程研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianming Liu其他文献
A data-driven method to study brain structural connectivities via joint analysis of microarray data and dMRI data
通过微阵列数据和 dMRI 数据的联合分析来研究大脑结构连接的数据驱动方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xiao Li;Tuo Zhang;Tao Liu;Jinglei Lv;Xintao Hu;Lei Guo;Tianming Liu - 通讯作者:
Tianming Liu
CDA: A Contrastive Data Augmentation Method for Alzheimer's Disease Detection
CDA:一种用于阿尔茨海默病检测的对比数据增强方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Junwen Duan;Fangyuan Wei;Jin Liu;Hongdong Li;Tianming Liu;Jianxin Wang - 通讯作者:
Jianxin Wang
A novel framework for analyzing cortical folding patterns based on sulcal baselines and gyral crestlines
一种基于脑沟基线和回嵴线分析皮质折叠模式的新框架
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Fangfei Ge;Hanbo Chen;Tuo Zhang;Xianqiao Wang;Lin Yuan;Xintao Hu;Lei Guo;Tianming Liu - 通讯作者:
Tianming Liu
Species Preserved and Exclusive Structural Connections Revealed by Sparse CCA
稀疏 CCA 揭示的保存物种和独特的结构连接
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xiao Li;Lei Du;Tuo Zhang;Xintao Hu;Xi Jiang;Lei Guo;Tianming Liu - 通讯作者:
Tianming Liu
Learning Brain Representation Using Recurrent Wasserstein Generative Adversarial Net
- DOI:
https://doi.org/10.1016/j.cmpb.2022.106979 - 发表时间:
2022 - 期刊:
- 影响因子:6.1
- 作者:
Ning Qiang;Qinglin Dong;Hongtao Liang;Jin Li;Shu Zhang;Cheng Zhang;Bao Ge;Yifei Sun;Jie Gao;Tianming Liu;Huiji Yue;Shijie Zhao - 通讯作者:
Shijie Zhao
Tianming Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianming Liu', 18)}}的其他基金
Doctoral Symposium at the 2019 Medical Image Computing and Computer Assisted Intervention Conference (MICCAI 2019)
2019年医学图像计算与计算机辅助干预大会博士生研讨会(MICCAI 2019)
- 批准号:
1917288 - 财政年份:2019
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
NBO: ABI Innovation: Multiscale Multimodal Mouse Connectomes
NBO:ABI 创新:多尺度多模式小鼠连接体
- 批准号:
1564736 - 财政年份:2016
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Exploring Functional Interactions between Gyri and Sulci
探索脑回和脑沟之间的功能相互作用
- 批准号:
1263524 - 财政年份:2013
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
CAREER: Discovering Common Human Brain Architecture
职业:发现常见的人脑结构
- 批准号:
1149260 - 财政年份:2012
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Enhancing Organizational Learning: Leveraging Unified Diversity through Human Resource Management
职业:加强组织学习:通过人力资源管理利用统一多样性
- 批准号:
2336679 - 财政年份:2024
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
DESIGN: Reforming organizational culture across Biology using a Community of Care framework
设计:使用护理社区框架改革跨生物学的组织文化
- 批准号:
2334832 - 财政年份:2024
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Cultivating Organizational Ambidexterity within a Learning Health System: Balancing Exploitative and Explorative Health Innovation
在学习健康系统中培养组织二元性:平衡利用性和探索性健康创新
- 批准号:
487420 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Salary Programs
PIRE: Deeply Decarbonizing Global Industrial Supply Chains: Technology, Organizational Practices, and Institutional Design
PIRE:全球工业供应链深度脱碳:技术、组织实践和制度设计
- 批准号:
2230743 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
International Comparative Study of DX Utilization Strategies by Measuring Organizational Capability
通过衡量组织能力进行 DX 利用策略的国际比较研究
- 批准号:
23K01578 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical study for utilizing BI to improve the quality of management control and organizational performance
利用BI提高管理控制质量和组织绩效的实证研究
- 批准号:
23K12584 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Organizational Behavior Management in Various Welfare Facilities Starting with Behavioral Records
各类福利机构的组织行为管理从行为记录入手
- 批准号:
23K17566 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Organizational resilience: A novel strategy for improving ICU outcomes
组织弹性:改善 ICU 治疗结果的新策略
- 批准号:
10586383 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
The study of Organizational Failure
组织失败研究
- 批准号:
23H00846 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Organizational factors associated with quality of care for opioid use disorders among transition-age adults in Medicaid
与医疗补助中过渡年龄成人阿片类药物使用障碍护理质量相关的组织因素
- 批准号:
10563455 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别: