Unveiling allosteric pathways in ion channels
揭示离子通道中的变构途径
基本信息
- 批准号:1440059
- 负责人:
- 金额:$ 0.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ion channels are ubiquitous proteins--one of Nature?s exquisite nano-scale molecular machines--that reside in membranes of excitable cells. Their role is to convert chemical and electrical stimuli into ionic currents. Conformational changes in the part of the protein responsible for sensing a stimulus (transducer domain) trigger the gate (effector domain), which can open and close, thereby controlling the flux of ions across the cell membrane. Details of this so-called allosteric communication are of broad relevance to physiology: several drug molecules target ion channels, including neurotoxins and anesthetics, and work by interfering with the coupling between the transducer and effector domains. Thus, a molecular-level description of allosteric signal propagation in such voltage-gated-like ion channels will likely inform the design of selective allosteric drugs. Importantly, quantitative allosteric models can be crucial to shed light on the mechanisms of modulation of electrical activity in neurons, an endeavor that is made particularly timely by the recent funding of independent large-scale scientific initiatives (e.g., the US Brain and the EU Human Brain projects), which are aimed at achieving unprecedented understanding of neuronal circuits. Despite its broad relevance, the macroscopic thermodynamic concept of allostery is difficult to characterize using only experiment. This project aims to use molecular dynamics (MD) based fully atomistic simulations to bridge the gap between thermodynamic observables and the underlying microscopic dynamics involved in the functioning of ion channels. The ultimate goal is to disentangle the intricate circuitry of energetic and statistical coupling among a functioning channel?s constituent amino acids in order to highlight the network of residue-residue interactions sustaining the mechanical coupling between distinct protein domains. To this end, the petascale capabilities of Blue Waters will be harnessed to generate long time-scales MD trajectories. Data generated will involve either the canonical ensemble or, by using enhanced sampling techniques such as metadyamics, appropriately biased probability distributions. Crucial milestones are the characterization of the free-energy landscape for channel activation/opening and its reshaping upon binding of modulating drugs. Knowledge of the free-energy landscape will inform the final milestone of the project, which takes advantage of a novel coarse-grained analysis of the generated MD trajectories to highlight residue-residue interactions crucial for allosteric signal propagation. The study focuses on three families of voltage-gated-like ion channels that are activated by different stimuli: transient receptor potential channels, voltage gated cation channels, and hyperpolarization-activated cyclic nucleotide-binding channels.
离子通道是普遍存在的蛋白质--自然界的一种?这种精巧的纳米级分子机器存在于可兴奋细胞的膜中。它们的作用是将化学和电刺激转化为离子电流。负责感知刺激的蛋白质部分(换能器结构域)的构象变化触发门(效应器结构域),门可以打开和关闭,从而控制离子穿过细胞膜的通量。这种所谓的变构通信的细节与生理学有着广泛的相关性:几种药物分子靶向离子通道,包括神经毒素和麻醉剂,并通过干扰换能器和效应器结构域之间的耦合来发挥作用。因此,在这种电压门控样离子通道中的变构信号传播的分子水平描述将可能告知选择性变构药物的设计。重要的是,定量变构模型对于阐明神经元电活动的调节机制至关重要,最近对独立的大规模科学计划(例如,美国大脑和欧盟人脑项目),旨在实现对神经元回路的前所未有的理解。尽管其广泛的相关性,宏观热力学概念的变构是很难表征使用唯一的实验。本计画的目的是利用分子动力学(MD)为基础的完全原子模拟,以弥合热力学观测值与离子通道运作中所涉及的微观动力学之间的差距。最终的目标是解开一个功能通道之间的能量和统计耦合的复杂电路?的组成氨基酸,以突出网络的残基相互作用维持不同的蛋白质结构域之间的机械耦合。为此,Blue沃茨的千万亿次能力将被用来生成长时间尺度的MD轨迹。生成的数据将涉及规范集合,或者通过使用增强的采样技术,如元数据,适当偏置的概率分布。关键的里程碑是表征通道激活/开放的自由能景观及其在调节药物结合后的重塑。自由能景观的知识将告知该项目的最后里程碑,该项目利用对生成的MD轨迹的新粗粒度分析来突出对变构信号传播至关重要的残基-残基相互作用。该研究集中在三个家庭的电压门控样离子通道,激活不同的刺激:瞬时受体电位通道,电压门控阳离子通道,超极化激活的环核苷酸结合通道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Klein其他文献
Is trauma center designation associated with disparities in discharge to rehabilitation centers among elderly patients with Traumatic Brain Injury?
创伤中心指定与老年创伤性脑损伤患者出院到康复中心的差异是否相关?
- DOI:
10.1016/j.amjsurg.2020.02.026 - 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
E. Gorman;S. Frangos;C. DiMaggio;Marko Bukur;Michael Klein;H. Pachter;Cherisse Berry - 通讯作者:
Cherisse Berry
Elderly Patients With Cervical Spine Fractures After Ground Level Falls Are at Risk for Blunt Cerebrovascular Injury.
地面跌倒后颈椎骨折的老年患者面临钝性脑血管损伤的风险。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
E. Gorman;C. DiMaggio;S. Frangos;Michael Klein;Cherisse Berry;Marko Bukur - 通讯作者:
Marko Bukur
Parallelizing a SAT-Based Product Configurator
并行化基于 SAT 的产品配置器
- DOI:
10.4230/lipics.cp.2021.55 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Nils Merlin Ullmann;Tomás Balyo;Michael Klein - 通讯作者:
Michael Klein
Case report 161
- DOI:
10.1007/bf00347209 - 发表时间:
1981-07-01 - 期刊:
- 影响因子:2.200
- 作者:
Michael Klein;Melvin H. Becker;Nancy B. Genieser;Nicholas Tzimas - 通讯作者:
Nicholas Tzimas
Derivation and application of a sustainability assessment system for the installation of high and extra-high voltage cables in the city of Vienna
- DOI:
10.1007/s00502-024-01282-1 - 发表时间:
2024-11-25 - 期刊:
- 影响因子:0.400
- 作者:
Florian Ainhirn;Michael Klein;Alicia Ogrysek;Lea Woop - 通讯作者:
Lea Woop
Michael Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Klein', 18)}}的其他基金
REU Site: High Performance Computing (HPC) Tools, Techniques, and Research across the Physical Sciences
REU 网站:跨物理科学领域的高性能计算 (HPC) 工具、技术和研究
- 批准号:
2348782 - 财政年份:2024
- 资助金额:
$ 0.92万 - 项目类别:
Standard Grant
MRI:Acquisition of a Multi-Purpose High-Performance Computing Infrastructure for Machine Learning and Computational Research at Temple University
MRI:天普大学购买用于机器学习和计算研究的多用途高性能计算基础设施
- 批准号:
2216289 - 财政年份:2022
- 资助金额:
$ 0.92万 - 项目类别:
Standard Grant
MRI: Acquisition of a Flexible High-Performance Computing System for Data and Compute Driven Scientific Discovery
MRI:获取灵活的高性能计算系统,用于数据和计算驱动的科学发现
- 批准号:
1625061 - 财政年份:2016
- 资助金额:
$ 0.92万 - 项目类别:
Standard Grant
Building Computational Models to Probe Membrane Fusion
建立计算模型来探测膜融合
- 批准号:
1212416 - 财政年份:2012
- 资助金额:
$ 0.92万 - 项目类别:
Standard Grant
Collaborative Research: Cyberinfrastructure and Research Facilities: Chemical Computations on Future High-end Computers
合作研究:网络基础设施和研究设施:未来高端计算机的化学计算
- 批准号:
0946358 - 财政年份:2009
- 资助金额:
$ 0.92万 - 项目类别:
Continuing Grant
Research Experience for Undergraduates Site
本科生研究经历网站
- 批准号:
0648953 - 财政年份:2007
- 资助金额:
$ 0.92万 - 项目类别:
Continuing grant
Collaborative Research: Cyberinfrastructure and Research Facilities: Chemical Computations on Future High-end Computers
合作研究:网络基础设施和研究设施:未来高端计算机的化学计算
- 批准号:
0625916 - 财政年份:2006
- 资助金额:
$ 0.92万 - 项目类别:
Continuing grant
MRI: Acquisition of a Property Measurement Facility for Interdisciplinary Studies
MRI:收购用于跨学科研究的属性测量设施
- 批准号:
0420915 - 财政年份:2004
- 资助金额:
$ 0.92万 - 项目类别:
Standard Grant
REU Site: Reseaerch Experiences for Undergraduates
REU 网站:本科生研究经历
- 批准号:
0243676 - 财政年份:2003
- 资助金额:
$ 0.92万 - 项目类别:
Continuing grant
Acquisition of a Viscoelastic Characterization Facility
购置粘弹性表征设备
- 批准号:
0320699 - 财政年份:2003
- 资助金额:
$ 0.92万 - 项目类别:
Standard Grant
相似海外基金
Defining the role of mitochondrial injury in MEK inhibitor cardiotoxicity
确定线粒体损伤在 MEK 抑制剂心脏毒性中的作用
- 批准号:
10753009 - 财政年份:2023
- 资助金额:
$ 0.92万 - 项目类别:
Peripheral and Central Pathways of α3 Glycine Receptors as Non-Opioid Molecular Targets to Treat Pain
α3 甘氨酸受体的外周和中枢通路作为非阿片类药物分子靶点治疗疼痛
- 批准号:
10612086 - 财政年份:2022
- 资助金额:
$ 0.92万 - 项目类别:
Peripheral and Central Pathways of α3 Glycine Receptors as Non-Opioid Molecular Targets to Treat Pain
α3 甘氨酸受体的外周和中枢通路作为非阿片类药物分子靶点治疗疼痛
- 批准号:
10445387 - 财政年份:2022
- 资助金额:
$ 0.92万 - 项目类别:
Studies of Allosteric Pathways in a Dimeric Enzyme
二聚酶变构途径的研究
- 批准号:
562472-2021 - 财政年份:2021
- 资助金额:
$ 0.92万 - 项目类别:
University Undergraduate Student Research Awards
Mapping Long‐range Allosteric Pathways in CRISPR‐Cas9
绘制 CRISPR-Cas9 中的长程变构途径
- 批准号:
10350163 - 财政年份:2020
- 资助金额:
$ 0.92万 - 项目类别:
The role of TMTC4, endoplasmic reticulum Ca2+ flux, and the unfolded protein response in noise-induced hearing loss
TMTC4、内质网 Ca2 通量和未折叠蛋白反应在噪声性听力损失中的作用
- 批准号:
10357899 - 财政年份:2020
- 资助金额:
$ 0.92万 - 项目类别:
The role of TMTC4, endoplasmic reticulum Ca2+ flux, and the unfolded protein response in noise-induced hearing loss
TMTC4、内质网 Ca2 通量和未折叠蛋白反应在噪声性听力损失中的作用
- 批准号:
10599869 - 财政年份:2020
- 资助金额:
$ 0.92万 - 项目类别:
Mechanisms and treatment of pain-depressed behavior
疼痛抑郁行为的机制和治疗
- 批准号:
10238775 - 财政年份:2020
- 资助金额:
$ 0.92万 - 项目类别:
Biochemistry of SAMHD1-mediated innate immunity responses
SAMHD1 介导的先天免疫反应的生物化学
- 批准号:
10212922 - 财政年份:2019
- 资助金额:
$ 0.92万 - 项目类别:
Biochemistry of SAMHD1-mediated innate immunity responses
SAMHD1 介导的先天免疫反应的生物化学
- 批准号:
10445349 - 财政年份:2019
- 资助金额:
$ 0.92万 - 项目类别: