EAGER: Development of a Multivariate Biomarker Analysis Technique for Paleoclimate Reconstruction
EAGER:开发用于古气候重建的多变量生物标志物分析技术
基本信息
- 批准号:1443176
- 负责人:
- 金额:$ 7.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reconstructions of past environments based on chemical "proxies" have provided invaluable insights into how the Earth system functions on a variety of timescales, from decades to millions of years. Organic molecular, or "biomarker", proxies are being applied increasingly in paleoclimate studies, and these compounds hold a wealth of information about an array of environmental conditions includin temperature, aridity, vegetation biome type, and water salinity. However, their current interpretation is mainly in terms of a single variable of interest, most often temperature. This study, led by an early-career researcher from the Woods Hole Oceanographic Institution, is a first attempt to leverage the multidimensional quality of biomarker data for paleoclimate reconstruction. A statistical model will be developed using artificial neural network (ANN) and support vector regression (SVR) algorithms ("machine learning" techniques). This will allow quantitative evaluation of how assemblages of biomarkers in sedimentary archives relate to an array of modern environmental conditions. The outcomes of the proposed project will include development of a new toolbox to quantitatively reconstruct past climates over land and in the ocean in many types of paleoclimate archives. Such a tool could have broad application across a range of fields including environmental studies, petroleum geology, and computer science.
基于化学“代用物”对过去环境的重建,为了解地球系统在从几十年到数百万年的各种时间尺度上是如何运作的提供了宝贵的见解。有机分子或“生物标志物”代用物在古气候研究中得到越来越多的应用,这些化合物含有关于一系列环境条件的丰富信息,包括温度、干旱、植被生物群系类型和水盐度。然而,他们目前的解释主要是根据一个感兴趣的单一变量,最常见的是温度。这项研究由伍兹霍尔海洋研究所的一位早期职业研究员领导,是利用生物标志物数据的多维质量进行古气候重建的第一次尝试。将使用人工神经网络(ANN)和支持向量回归(SVR)算法(“机器学习”技术)开发统计模型。这将允许定量评估沉积档案中生物标志物的组合与一系列现代环境条件的关系。拟议项目的成果将包括开发一个新的工具箱,在许多类型的古气候档案中定量重建过去的陆地和海洋气候。这样的工具可以广泛应用于包括环境研究、石油地质学和计算机科学在内的一系列领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Tierney其他文献
Causally Linkage of Adolescent Behavioral Anomalies to Prenatal Opioid Exposure
青少年行为异常与产前阿片类药物暴露的因果联系
- DOI:
10.1016/j.drugalcdep.2024.112253 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Arrianna Lister;Jessica Tierney;Tiffany Dunn;Yongjia Yu;Christina Merritt;George Saade;Kathryn Cunningham;Ping Wu - 通讯作者:
Ping Wu
Clinical Outcomes of a Novel Cranial Movement Therapy (CMT) in Post-Traumatic Brain Injury: A Case Report
- DOI:
10.1016/j.apmr.2021.07.593 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Charles Simkovich;Mohammad Hadadzadeh;Kristine Grubler;Jessica Tierney;Madeline Berger;Luke Senko - 通讯作者:
Luke Senko
Maternal Opioid Exposure Alters Murine Neurodevelopment
母亲阿片类药物暴露改变小鼠神经发育
- DOI:
10.1016/j.drugalcdep.2024.112252 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Jessica Tierney;Arrianna Lister;Tiffany Dunn;Yongjia Yu;Julia Granchi;Christina Merritt;Shelly Buffington;George Saade;Kathryn Cunningham;Ping Wu - 通讯作者:
Ping Wu
Jessica Tierney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Tierney', 18)}}的其他基金
A paleoclimate reanalysis of the coupled Greenland Ice Sheet--climate evolution during the Last Interglacial
格陵兰冰盖耦合的古气候再分析--末次间冰期气候演化
- 批准号:
2202667 - 财政年份:2022
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative Research: P2C2--Constraining Cloud and Convective Parameterizations Using Paleoclimate Data Assimilation
合作研究:P2C2——利用古气候数据同化约束云和对流参数化
- 批准号:
2203000 - 财政年份:2022
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the sea-surface temperature pattern effect for Last Glacial Maximum and Pliocene constraints on climate sensitivity
合作研究:量化末次盛冰期和上新世气候敏感性限制的海面温度模式效应
- 批准号:
2002398 - 财政年份:2020
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative Research: A paleoclimate perspective on the response of Southwest North American rainfall to elevated greenhouse gases
合作研究:从古气候角度探讨北美西南部降雨对温室气体升高的响应
- 批准号:
1903171 - 财政年份:2019
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative Research: Anatomy of a Greenhouse World: The Early Eocene of the Green River Basin, Wyoming
合作研究:温室世界的解剖:怀俄明州格林河流域的始新世早期
- 批准号:
1812525 - 财政年份:2018
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Molecular views of past changes in the North American Monsoon
北美季风过去变化的分子观点
- 批准号:
1651034 - 财政年份:2017
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative Research: A Combined Proxy and Model Investigation of Late Holocene Paleoclimate in the Horn of Africa
合作研究:非洲之角全新世晚期古气候的综合代理和模型研究
- 批准号:
1636445 - 财政年份:2016
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative Research: P2C2--Paleoclimate Reanalysis: A New View of Past Climates
合作研究:P2C2--古气候再分析:过去气候的新观点
- 批准号:
1602301 - 财政年份:2016
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
Collaborative research: Validation of the Lacustrine Branched GDGT Paleothermometer
合作研究:湖相分支 GDGT 古温度计的验证
- 批准号:
1603674 - 财政年份:2015
- 资助金额:
$ 7.59万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
- 批准号:
23K14679 - 财政年份:2023
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an Asymmetric Electrochemical-NHK Reaction using Multivariate Linear Regression Analyses
使用多元线性回归分析开发不对称电化学-NHK 反应
- 批准号:
2138035 - 财政年份:2022
- 资助金额:
$ 7.59万 - 项目类别:
Fellowship Award
Development of pattern recognition algorithm for ultra low frequency multivariate time-series data considering dimensional correlation
考虑量纲相关性的超低频多元时间序列数据模式识别算法开发
- 批准号:
21K11938 - 财政年份:2021
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and evaluation of prediction model for multivariate survival data
多变量生存数据预测模型的开发和评估
- 批准号:
21K17712 - 财政年份:2021
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Preparation of microbial broth library and development of multivariate screening system toward new active compounds search
微生物肉汤文库的制备和多变量筛选系统的开发以寻找新的活性化合物
- 批准号:
20K05858 - 财政年份:2020
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of multivariate regression models for real-time monitoring of physicochemical changes of foodstuffs during drying process using Vis-NIR optical imaging
开发多元回归模型,利用 Vis-NIR 光学成像实时监测食品在干燥过程中的理化变化
- 批准号:
420778578 - 财政年份:2019
- 资助金额:
$ 7.59万 - 项目类别:
Research Grants
Development of a method for identifying and evaluating athletic performance movement characteristics using multivariate time series pattern analysis
开发一种使用多元时间序列模式分析来识别和评估运动表现运动特征的方法
- 批准号:
19K11524 - 财政年份:2019
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and development of multivariate seasonal adjustment method
多元季节调整方法的研究与开发
- 批准号:
18H03210 - 财政年份:2018
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of nondestructive identification method for pigments and dyes based on multivariate analysis of reflectance spectra
基于反射光谱多元分析的颜料和染料无损鉴定方法的发展
- 批准号:
17K01201 - 财政年份:2017
- 资助金额:
$ 7.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)