Collaborative Research: Unraveling Transport in Porous Media through the Integration of Isotopic Tracers, Geophysical Data, and Numerical Modeling

合作研究:通过同位素示踪剂、地球物理数据和数值模拟的集成来揭示多孔介质中的输运

基本信息

  • 批准号:
    1446271
  • 负责人:
  • 金额:
    $ 22.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

Various estimates suggest that economic liabilities associated with contaminated groundwater sites in the U.S. run into the hundreds of billions of dollars. Each of these sites poses a potential threat to the environment and human health; nearly 90% of the conventional court-mandated strategies fail to remediate polluted sites adequately. In many cases, these failures can be attributed to remediation strategies that rely on classical conceptual models of contaminant transport, which neither represent subsurface heterogeneity sufficiently nor capture preferential flow and low permeability solute traps. As a result, the application of models to practical problems retains significant uncertainty. While many different models for transport exist, understanding which is "most correct" for a given problem is fundamental to the prediction of contaminant transport and reaction and site clean-up. This project will utilize methods from the fields of contaminant transport, geophysics, elemental and isotope geochemistry, and mixing-driven reactions to address this need. The research will ultimately enable significantly improved remediation design strategies and improved assessment of human health risk from contaminated groundwater sites. As part of this research, new high school chemistry labs will be developed following the Colorado high school curriculum focusing on acid-base chemistry, pH buffers, and metal geochemistry in collaboration with a Denver public high school. These labs will be disseminated beyond local development via the National Earth Science Teachers Association's "The Earth Scientist" Journal.The reliability of contaminant transport predictions depends on the appropriateness of the numerical/conceptual model to site geology. The primary questions are: (1) which physically measureable parameters control solute mass transfer and geochemical reactions, (2) which parameters can be predicted a priori, and (3) which mathematical formulations accurately describe site specific transport under varying flow rates and heterogeneity. The main limitation of many existing transport models is the poor connection between fitting parameters governing solute transport in models and the physical system. The objective of the work is to explore controls on the poor predictive ability of existing physical transport models, especially those that include chemical reaction. Diffusion-induced elemental fractionation, diffusion-induced lithium isotopic fractionation, and geophysical characterization will be integrated to explore the controls on solute transport and reaction. While conservative tracer concentrations have been used to constrain advective-dispersive transport parameters in the past, isotopic tracers fractionate during diffusion and can therefore provide information on immobile pore space in cases where diffusion dominates ion transport. The power of this project will be to add significant constraints to the controls of known parameters in solute transport modeling, determine their controls on transport processes, and quantify the distribution of transport length scales active in a porous medium and the subsequent impact on reaction kinetics. The experimental data produced will be used to validate existing theories commonly used by the hydrology community (i.e., "local" versus "non-local" transport), and explore new theories as motivated by emerging data, if needed, to develop new insight into transport and reaction behavior.
各种估计表明,与美国受污染的地下水场地相关的经济负债高达数千亿美元。这些场所中的每一个都对环境和人类健康构成潜在威胁;近90%的传统法院授权的战略未能充分修复受污染的场所。在许多情况下,这些故障可以归因于补救策略,依赖于经典的概念模型的污染物传输,既不代表地下异质性充分,也不捕捉优先流和低渗透性溶质陷阱。因此,模型在实际问题中的应用仍然存在很大的不确定性。虽然存在许多不同的迁移模型,但了解哪种模型对特定问题“最正确”,对于预测污染物迁移和反应以及场地清理至关重要。该项目将利用污染物迁移、地球物理学、元素和同位素地球化学以及混合驱动反应等领域的方法来满足这一需求。这项研究最终将大大改善补救设计战略,并改善对受污染地下水场所的人类健康风险的评估。 作为这项研究的一部分,新的高中化学实验室将按照科罗拉多高中课程开发,重点是酸碱化学,pH缓冲液和金属地球化学与丹佛公立高中合作。 这些实验室将通过国家地球科学教师协会的“地球科学家”杂志传播到地方发展之外。污染物输送预测的可靠性取决于数值/概念模型对场地地质的适当性。主要问题是:(1)哪些物理上可测量的参数控制溶质质量转移和地球化学反应,(2)哪些参数可以事先预测,(3)哪些数学公式准确地描述了在变化的流速和非均匀性下的特定地点的迁移。现有的溶质运移模型的主要缺陷是模型中控制溶质运移的拟合参数与物理系统之间的联系不好。这项工作的目的是探索控制现有的物理传输模型,特别是那些包括化学反应的预测能力差。扩散引起的元素分馏,扩散引起的锂同位素分馏和地球物理表征将被整合,以探索溶质运移和反应的控制。虽然保守的示踪剂浓度已被用来约束对流分散的传输参数在过去,同位素示踪剂frackets扩散过程中,因此可以提供信息的情况下,扩散主导离子传输的固定孔隙空间。该项目的力量将是增加显着的约束,以控制已知的参数在溶质运移建模,确定其控制的运输过程,并量化的分布在多孔介质中活跃的运输长度尺度和随后的影响反应动力学。产生的实验数据将用于验证水文学界常用的现有理论(即,“本地”与“非本地”运输),并探索新的理论,如有需要,新兴的数据,以发展新的洞察运输和反应行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Fantle其他文献

Matthew Fantle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Fantle', 18)}}的其他基金

Collaborative Research: Studying Carbon Injection and the Silicate Weathering Feedback over the Paleocene Eocene Thermal Maximum Using Ca Isotopes and Modeling
合作研究:利用 Ca 同位素和模拟研究古新世始新世热最大值期间的碳注入和硅酸盐风化反馈
  • 批准号:
    2233961
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Calcium and strontium isotopes as indicators of recrystallization rates in marine carbonates: Implications for geochemical proxies
钙和锶同位素作为海洋碳酸盐重结晶速率的指标:对地球化学代理的影响
  • 批准号:
    1154839
  • 财政年份:
    2012
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Multiple Collector Inductively-Coupled Mass Spectrometer (MC-ICP-MS) for Multi-Disciplinary Biogeochemical Research at Penn State
MRI-R2:宾夕法尼亚州立大学购买多接收器电感耦合质谱仪 (MC-ICP-MS) 用于多学科生物地球化学研究
  • 批准号:
    0959092
  • 财政年份:
    2010
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328117
  • 财政年份:
    2024
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328119
  • 财政年份:
    2024
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the phylogenetic and evolutionary patterns of fragmented mitochondrial genomes in parasitic lice
合作研究:揭示寄生虱线粒体基因组片段的系统发育和进化模式
  • 批准号:
    2328118
  • 财政年份:
    2024
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243690
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243691
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Controls on the Origin and Environmental Functioning of Oxbow Lakes
合作研究:揭示 Oxbow 湖的起源和环境功能的控制
  • 批准号:
    2321056
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the link between water ages and silicate weathering rates at the catchment scale
合作研究:揭示流域尺度的水年龄和硅酸盐风化速率之间的联系
  • 批准号:
    2308547
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Initial Charge Separation Mechanism in Photosystem I: A synergistic Approach
合作研究:揭示光系统 I 中的初始电荷分离机制:一种协同方法
  • 批准号:
    2313482
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the Structure and Mode of Action of Fungal Ice Nucleators
合作研究:揭示真菌冰核剂的结构和作用模式
  • 批准号:
    2314913
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling the link between water ages and silicate weathering rates at the catchment scale
合作研究:揭示流域尺度的水年龄和硅酸盐风化速率之间的联系
  • 批准号:
    2308548
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了