CPS: TTP Option: Synergy: Collaborative Research: Calibration of Personal Air Quality Sensors in the Field - Coping with Noise and Extending Capabilities
CPS:TTP 选项:协同:协作研究:现场校准个人空气质量传感器 - 应对噪音和扩展功能
基本信息
- 批准号:1446899
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All cyber-physical systems (CPS) depend on properly calibrated sensors to sense the surrounding environment. Unfortunately, the current state of the art is that calibration is often a manual and expensive operation; moreover, many types of sensors, especially economical ones, must be recalibrated often. This is typically costly, performed in a lab environment, requiring that sensors be removed from service. MetaSense will reduce the cost and management burden of calibrating sensors. The basic idea is that if two sensors are co-located, then they should report similar values; if they do not, the least-recently-calibrated sensor is suspect. Building on this idea, this project will provide an autonomous system and a set of algorithms that will automate the detection of calibration issues and preform recalibration of sensors in the field, removing the need to take sensors offline and send them to a laboratory for calibration. The outcome of this project will transform the way sensors are engineered and deployed, increasing the scale of sensor network deployment. This in turn will increase the availability of environmental data for research, medical, personal, and business use. MetaSense researchers will leverage this new data to provide early warning for factors that could negatively affect health. In addition, graduate student engagement in the research will help to maintain the STEM pipeline.This project will leverage large networks of mobile sensors connected to the cloud. The cloud will enable using large data repositories and computational power to cross-reference data from different sensors and detect loss of calibration. The theory of calibration will go beyond classical models for computation and physics of CPS. The project will combine big data, machine learning, and analysis of the physics of sensors to calculate two factors that will be used in the calibration. First, MetaSense researchers will identify measurement transformations that, applied in software after the data collection, will generate calibrated results. Second, the researchers will compute the input for an on-board signal-conditioning circuit that will enable improving the sensitivity of the physical measurement. The project will contribute research results in multiple disciplines. In the field of software engineering, the project will contribute a new theory of service reconfiguration that will support new architecture and workflow languages. New technologies are needed because the recalibration will happen when the machine learning algorithms discover calibration errors, after the data has already been collected and processed. These technologies will support modifying not only the raw data in the database by applying new calibration corrections, but also the results of calculations that used the data. In the field of machine learning, the project will provide new algorithms for dealing with spatiotemporal maps of noisy sensor readings. In particular, the algorithms will work with Gaussian processes and the results of the research will provide more meaningful confidence intervals for these processes, substantially increasing the effectiveness of MetaSense models compared to the current state of the art. In the field of pervasive computing, the project will build on the existing techniques for context-aware sensing to increase the amount of information available to the machine learning algorithms for inferring calibration parameters. Adding information about the sensing context is paramount to achieve correct calibration results. For example, a sensor that measures air pollution inside a car on a highway will get very different readings if the car window is open or closed. Finally, the project will contribute innovations in sensor calibration hardware. Here, the project will contribute innovative signal-conditioning circuits that will interact with the cloud system and receive remote calibration parameters identified by the machine learning algorithms. This will be a substantial advance over current circuits based on simple feedback loops because it will have to account for the cloud and machine learning algorithms in the loop and will have to perform this more complex calibration with power and bandwidth constraints. Inclusion of graduate students in the research helps to maintain the STEM pipeline.
所有的网络物理系统(CP)都依赖经过适当校准的传感器来感知周围环境。不幸的是,目前的技术水平是,校准通常是一项人工且昂贵的操作;此外,许多类型的传感器,特别是经济型传感器,必须经常重新校准。这通常是昂贵的,在实验室环境中执行,需要将传感器从服务中移除。MetaSense将减少校准传感器的成本和管理负担。基本思想是,如果两个传感器位于同一位置,则它们应该报告类似的值;如果不是,则最近校准最少的传感器是可疑的。在这一想法的基础上,该项目将提供一个自主系统和一套算法,使现场传感器的校准问题检测和预成型重新校准自动化,从而消除将传感器离线并将其送到实验室进行校准的需要。该项目的成果将改变传感器的设计和部署方式,增加传感器网络部署的规模。这反过来将增加环境数据的可用性,用于研究、医疗、个人和商业用途。MetaSense研究人员将利用这一新数据为可能对健康产生负面影响的因素提供早期预警。此外,研究生参与研究将有助于维护STEM管道。该项目将利用连接到云的大型移动传感器网络。云将允许使用大型数据存储库和计算能力来交叉参考来自不同传感器的数据,并检测校准丢失。校准理论将超越CPS的计算和物理的经典模型。该项目将结合大数据、机器学习和传感器物理分析来计算将用于校准的两个因素。首先,MetaSense研究人员将确定在数据收集后应用于软件的测量转换,将生成校准结果。其次,研究人员将计算车载信号调理电路的输入,该电路将能够提高物理测量的灵敏度。该项目将贡献多个学科的研究成果。在软件工程领域,该项目将贡献一种新的服务重新配置理论,支持新的体系结构和工作流语言。需要新的技术,因为在数据已经收集和处理之后,当机器学习算法发现校准错误时,将发生重新校准。这些技术将不仅支持通过应用新的校准校正来修改数据库中的原始数据,而且还支持修改使用该数据的计算结果。在机器学习领域,该项目将提供处理噪声传感器读数的时空图的新算法。特别是,算法将与高斯过程一起工作,研究结果将为这些过程提供更有意义的置信度区间,与当前技术状态相比,大大提高了MetaSense模型的有效性。在普适计算领域,该项目将建立在现有的上下文感知技术的基础上,以增加机器学习算法可用于推断校准参数的信息量。添加有关感测环境的信息对于获得正确的校准结果至关重要。例如,在高速公路上测量车内空气污染的传感器在车窗打开或关闭时会获得非常不同的读数。最后,该项目将有助于传感器校准硬件的创新。在这里,该项目将贡献创新的信号调理电路,这些电路将与云系统交互,并接收由机器学习算法识别的远程校准参数。与基于简单反馈环路的当前电路相比,这将是一个实质性的进步,因为它将不得不考虑环路中的云和机器学习算法,并且将不得不执行具有功率和带宽限制的更复杂的校准。将研究生纳入研究有助于维持STEM渠道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hannigan其他文献
Investigating the spatiotemporal distribution of fine particulate matter sources during persistent cold air pools in Salt Lake County
- DOI:
10.1016/j.aeaoa.2024.100305 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Silberstein;Daniel Mendoza;Emma Rieves;Colleen E. Reid;Michael Hannigan - 通讯作者:
Michael Hannigan
Michael Hannigan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hannigan', 18)}}的其他基金
Collaborative Research: Impact of Metals on Photochemical Aging of Water Soluble Organic Carbon in Atmospheric Particulate Matter: A Combined Lab and Field Study
合作研究:金属对大气颗粒物中水溶性有机碳光化学老化的影响:实验室和现场联合研究
- 批准号:
1549387 - 财政年份:2016
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
相似国自然基金
RNA结合蛋白TTP在阿尔茨海默病中的作用机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
TTP和XPO4蛋白介导lncRNA转运在子宫颈鳞状细胞癌中功能及机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
平滑肌中TTP在血压调控中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
TTP-KDM3A/CYP19A1调控滋养层细胞分化和侵袭的机制研究
- 批准号:82171669
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
锌指蛋白TTP调控m6A抑制血吸虫病肝纤维化的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
RNA结合蛋白TTP靶向抑制LncRNA-SNHG1保护帕金森病多巴胺神经元的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心外膜脂肪组织TTP在病理性心肌肥厚发生发展中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
外泌体miR-27a-3p—TTP—NLRP3环路介导的软骨细胞焦亡与滑膜炎正反馈互作在膝骨关节炎中的作用及机制研究
- 批准号:82002331
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
αIIb启动子调控血小板靶向表达ADAMTS13治疗CRISPR/Cas9构建的TTP小鼠模型的实验研究
- 批准号:82070117
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
锌指蛋白TTP介导的C型钠肽mRNA 降解参与卵母细胞减数分裂恢复的机制
- 批准号:31972573
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
CPS: TTP Option: Small: Consistency vs. Availability in Cyber-Physical Systems
CPS:TTP 选项:小:网络物理系统中的一致性与可用性
- 批准号:
2233769 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: CPS: TTP Option: Medium: Sharing Farm Intelligence via Edge Computing
协作研究:CPS:TTP 选项:中:通过边缘计算共享农场情报
- 批准号:
2133355 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
CPS: TTP Option: Medium: Coordinating Actors via Learning for Lagrangian Systems (CALLS)
CPS:TTP 选项:中:通过拉格朗日系统学习协调参与者 (CALLS)
- 批准号:
2135579 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: CPS: TTP Option: Medium: Sharing Farm Intelligence via Edge Computing
协作研究:CPS:TTP 选项:中:通过边缘计算共享农场情报
- 批准号:
2133407 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: CPS: TTP Option: Medium: i-HEAR: immersive Human-On-the-Loop Environmental Adaptation for Stress Reduction
合作研究:CPS:TTP 选项:中:i-HEAR:沉浸式人类循环环境适应以减轻压力
- 批准号:
2039089 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: CPS: TTP Option: Medium: i-HEAR: immersive Human-on-the-loop Environmental Adaptation for stress Reduction
合作研究:CPS:TTP 选项:中:i-HEAR:沉浸式人类循环环境适应以减轻压力
- 批准号:
2038706 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: CPS: TTP Option: Medium: i-HEAR: immersive Human-On-the-Loop Environmental Adaptation for Stress Reduction
合作研究:CPS:TTP 选项:中:i-HEAR:沉浸式人类循环环境适应以减轻压力
- 批准号:
2038905 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
CPS: TTP Option: Medium: Discovering and Resolving Anomalies in Smart Cities
CPS:TTP 选项:中:发现并解决智慧城市中的异常情况
- 批准号:
2038612 - 财政年份:2020
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
CPS: TTP Option: Medium: Collaborative Research: Cyber-Physical System Integrity and Security with Impedance Signatures
CPS:TTP 选项:中:协作研究:具有阻抗签名的网络物理系统完整性和安全性
- 批准号:
1932213 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
CPS: TTP Option: Medium: Collaborative Research: Smoothing Traffic via Energy-efficient Autonomous Driving (STEAD)
CPS:TTP 选项:中:协作研究:通过节能自动驾驶 (STEAD) 平滑交通
- 批准号:
1837210 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Standard Grant