BIGDATA: F: DKA: DKM: Novel Out-of-core and Parallel Algorithms for Processing Biological Big Data
BIGDATA:F:DKA:DKM:用于处理生物大数据的新型核外并行算法
基本信息
- 批准号:1447711
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in an era when vast amounts of data are being generated at a low cost in several domains of science and engineering. However, advances in analytics tools have not caught up with data generation. In particular, existing tools take too much time. A main reason is that core memories of computers cannot hold all the data to be analyzed -- most of the data have to be stored in secondary storages (SSs) such as solid state drives and (rotating) disks. Data access times from SSs are several orders of magnitude more than from core memories. Tremendous speedups can be obtained by minimizing the number of data accesses from SSs. Also, although there has been much recent research in the development of multicore and GPU algorithms for biological problems, for many of the problems only sequential in-core algorithms are known.This project is to develop novel out-of-core algorithms for biological big data (BBD) analytics. The proposed novel parallel algorithms employ various architectures including heterogeneous clusters of multicores and GPUs, to solve BBD problems. The developed novel scalable algorithms can handle petabytes of data and beyond for data mining applicable over varied datasets. This interdisciplinary project provides a new computation suite for mining voluminous biological and other data. This project provides educational opportunities to graduate and undergraduate students to get first-hand research experience in computational aspects of biological data analysis.
我们生活在一个在科学和工程的多个领域以低成本生成大量数据的时代。然而,分析工具的进步并没有赶上数据生成的速度。特别是,现有的工具需要太多的时间。一个主要原因是计算机的核心存储器无法保存所有要分析的数据-大多数数据必须存储在二级存储器(SS)中,如固态驱动器和(旋转)磁盘。从SS的数据访问时间是几个数量级以上的核心存储器。通过最小化来自SS的数据访问数量可以获得巨大的加速比。此外,虽然最近在开发多核和GPU算法以解决生物学问题方面进行了大量研究,但对于许多问题,只有顺序的核内算法是已知的。本项目旨在开发用于生物大数据(BBD)分析的新型核外算法。所提出的新的并行算法采用各种架构,包括异构集群的多核和GPU,解决BBD问题。所开发的新颖的可扩展算法可以处理PB级的数据,并超越适用于不同数据集的数据挖掘。这个跨学科的项目提供了一个新的计算套件,用于挖掘大量的生物和其他数据。该项目为研究生和本科生提供教育机会,以获得生物数据分析计算方面的第一手研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanguthevar Rajasekaran其他文献
Robust network supercomputing with unreliable workers
- DOI:
10.1016/j.jpdc.2014.10.002 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Kishori M. Konwar;Sanguthevar Rajasekaran;Alexander A. Shvartsman - 通讯作者:
Alexander A. Shvartsman
Fast algorithms for placing large entries along the diagonal of a sparse matrix
- DOI:
10.1016/j.cam.2010.07.002 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:
- 作者:
Vamsi Kundeti;Sanguthevar Rajasekaran - 通讯作者:
Sanguthevar Rajasekaran
Distributed Path-Based Inference in Semantic Networks
- DOI:
10.1023/b:supe.0000026852.08638.96 - 发表时间:
2004-08-01 - 期刊:
- 影响因子:2.700
- 作者:
Chain-Wu Lee;Chun-Hsi Huang;Laurence Tianruo Yang;Sanguthevar Rajasekaran - 通讯作者:
Sanguthevar Rajasekaran
A relaxation scheme for increasing the parallelism in Jacobi-SVD
- DOI:
10.1016/j.jpdc.2007.12.003 - 发表时间:
2008-06-01 - 期刊:
- 影响因子:
- 作者:
Sanguthevar Rajasekaran;Mingjun Song - 通讯作者:
Mingjun Song
Evaluating holistic aggregators efficiently for very large datasets
- DOI:
10.1007/s00778-003-0112-2 - 发表时间:
2004-05-01 - 期刊:
- 影响因子:3.800
- 作者:
Lixin Fu;Sanguthevar Rajasekaran - 通讯作者:
Sanguthevar Rajasekaran
Sanguthevar Rajasekaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanguthevar Rajasekaran', 18)}}的其他基金
Ninth International Conference on Computational Advances in Bio & Medical Sciences (ICCABS)
第九届生物计算进展国际会议
- 批准号:
2005642 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Eighth International IEEE Conference on Computational Advances in Bio and Medical Sciences (ICCABS) - Travel Awards
第八届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1853991 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
EAGER: Type II: Deep Learning and Combinatorial Algorithms for Inorganic Crystal Structure Prediction
EAGER:类型 II:无机晶体结构预测的深度学习和组合算法
- 批准号:
1843025 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Seventh International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第七届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1747853 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
RAISE: Big Data Tools: From Bioinformatics To Materials Genomics
RAISE:大数据工具:从生物信息学到材料基因组学
- 批准号:
1743418 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Fifth International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第五届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1554243 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Sixth International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第六届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1649360 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Fourth International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第四届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1441827 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Third International IEEE Conference on Computational Advances in Bio and Medical Sciences (ICCABS) - Travel Awards
第三届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1342060 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Second International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第二届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1219598 - 财政年份:2012
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
HIV-1逆转录酶/整合酶双重抑制剂DKA-DAPYs的分子设计、合成及抗HIV活性研究
- 批准号:21402148
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Planning and partnership development for a scalable intervention to prevent diabetic ketoacidosis (DKA) in children at diabetes diagnosis in Canada
规划和发展合作伙伴关系,以开展可扩展的干预措施,以预防加拿大糖尿病诊断儿童的糖尿病酮症酸中毒 (DKA)
- 批准号:
460080 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Miscellaneous Programs
BIGDATA: F: DKA: Scalable, Private Algorithms for Continual Data Analysis
BIGDATA:F:DKA:用于持续数据分析的可扩展、私有算法
- 批准号:
1832766 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
What is diabetic ketoacidosis (DKA)? - DiaBiteSize
什么是糖尿病酮症酸中毒(DKA)?
- 批准号:
374886 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Salary Programs
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1661760 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1664720 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447473 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447413 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447476 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Randomized Numerical Linear Algebra (RandNLA) for multi-linear and non-linear data
BIGDATA:F:DKA:协作研究:用于多线性和非线性数据的随机数值线性代数 (RandNLA)
- 批准号:
1447283 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Usable Multiple Scale Big Data Analytics through Interactive Visualization
BIGDATA:F:DKA:通过交互式可视化进行可用的多尺度大数据分析
- 批准号:
1447416 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Standard Grant