EAGER: Type II: Deep Learning and Combinatorial Algorithms for Inorganic Crystal Structure Prediction

EAGER:类型 II:无机晶体结构预测的深度学习和组合算法

基本信息

  • 批准号:
    1843025
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis EAGER award supports research and education involving a new collaboration kindled at the MATDAT18 Datathon event focused on developing artificial intelligence methods to discover new materials or identify specific materials with desired properties for an application. Methods involving computation, materials data, and the tools of data science offer the potential to find or design a material with desired properties much faster and at lower cost than traditional methods used by materials scientists and engineers. In this project, the research team will develop novel machine learning techniques to mine knowledge from various publicly available databases on materials and their properties. The knowledge thus gained can be utilized for material selection and design. The team will focus first on using the methods of data science and materials data from a large community repository obtained from using computers and theory to calculate the energy needed to form a material from its constitutive elements. All the techniques developed in this project will be coded as software for different computers. Software will be released as open source codes to the materials science and data science communities via a number of mechanisms including the GitHub. This project will also provide educational opportunities to graduate and undergraduate students and a first-hand research experience in data analysis for materials science. Results of this project will be incorporated in appropriate undergraduate and graduate courses. Strong efforts will be made to include minorities and women. Results of this project will be disseminated widely via publications in journals and international conferences.TECHNICAL SUMMARYThis EAGER award supports research and education involving a new collaboration kindled at the MATDAT18 Datathon event focused on developing deep learning predictors for formation energies and other materials properties. Large databases of computed material properties, such as The Materials Project and AFLOWLIB developed under Materials Genome Initiative, host properties of tens of thousands of materials. They are primarily employed to screen materials for various target applications such as photocatalysis and battery materials. Such databases can also be utilized to develop deep learning-based predictors of materials properties. These predictions are expected to be more accurate than predictions made using traditional machine learning (ML) techniques. Even cutting edge conventional ML methods such as Gradient Boosting or Random Forest of Trees have limited capacity, or the ability to learn, when compared to multi-layer deep artificial neural networks employed in deep learning to mine vast data. In this project the research team aims to develop a deep learning predictor for formation energy of crystals. The investigators also propose to develop other relevant combinatorial algorithms for solving this problem. Formation energy, which is the energy difference between the crystal and the constituent elements in their atomic form, is one of the most reliable properties available from these databases. The focus of this project is on fast and highly accurate prediction of formation energies and stability of materials by utilizing the superior capacity of deep learning systems and other algorithms to learn from big data.The project will deliver a publicly accessible cyber infrastructure implementing a deep learning system capable of predicting formation energies for inorganic materials with an accuracy that is vastly superior to that of the predictors built with traditional ML models, and new forms of chemical representations of materials that can be reused to predict other properties of materials. One of the challenges in the employment of deep learning techniques is in the large training times taken by these algorithms. The research team plans to address this challenge with a variety of algorithmic innovations including novel parallel training algorithms. The investigators plan to employ a number of parallel architectures including CPU clusters and GPUs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EAGER奖支持研究和教育,涉及在MATDAT18 Datasheet活动中点燃的新合作,专注于开发人工智能方法,以发现新材料或识别具有应用所需特性的特定材料。 涉及计算,材料数据和数据科学工具的方法提供了比材料科学家和工程师使用的传统方法更快,成本更低的找到或设计具有所需特性的材料的可能性。在这个项目中,研究小组将开发新的机器学习技术,从各种公开的材料及其属性数据库中挖掘知识。由此获得的知识可用于材料选择和设计。 该团队将首先专注于使用数据科学方法和来自大型社区存储库的材料数据,这些数据是通过使用计算机和理论来计算从其构成元素形成材料所需的能量。 在这个项目中开发的所有技术将被编码为不同计算机的软件。软件将通过包括GitHub在内的多种机制作为开源代码发布给材料科学和数据科学社区。该项目还将为研究生和本科生提供教育机会,并提供材料科学数据分析的第一手研究经验。该项目的成果将纳入适当的本科和研究生课程。将作出巨大努力,将少数民族和妇女包括在内。该项目的成果将通过期刊和国际会议的出版物广泛传播。技术总结该EAGER奖支持研究和教育,涉及在MATDAT18 Datasheet活动中点燃的新合作,专注于开发形成能量和其他材料属性的深度学习预测器。计算材料属性的大型数据库,如在材料基因组计划下开发的材料项目和AFLOWLIB,拥有数万种材料的属性。它们主要用于筛选各种目标应用的材料,如电池和电池材料。这些数据库也可以用于开发基于深度学习的材料性能预测器。预计这些预测比使用传统机器学习(ML)技术进行的预测更准确。与深度学习中用于挖掘大量数据的多层深度人工神经网络相比,即使是最先进的传统ML方法,如梯度提升或随机树森林,其容量或学习能力也有限。在这个项目中,研究小组的目标是开发一个深度学习预测晶体形成能量的方法。研究人员还建议开发其他相关的组合算法来解决这个问题。形成能是晶体和原子形式的组成元素之间的能量差,是这些数据库中最可靠的属性之一。该项目的重点是利用深度学习系统和其他算法从大数据中学习的上级能力,快速和高精度地预测材料的形成能和稳定性。该项目将提供一个可公开访问的网络基础设施,该基础设施实施了一个能够预测无机材料形成能的深度学习系统,其准确性远远上级所构建的预测器传统的ML模型,以及新形式的材料化学表示,可以重复使用来预测材料的其他属性。使用深度学习技术的挑战之一是这些算法需要大量的训练时间。研究团队计划通过各种算法创新来应对这一挑战,包括新颖的并行训练算法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DTWNet: a Dynamic Time Warping Network
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Xingyu Cai;Tingyang Xu;Jinfeng Yi;Junzhou Huang;S. Rajasekaran
  • 通讯作者:
    Xingyu Cai;Tingyang Xu;Jinfeng Yi;Junzhou Huang;S. Rajasekaran
HMSC: a Hybrid Metagenomic Sequence Classification Algorithm
HMSC:混合宏基因组序列分类算法
TAG: Gradient Attack on Transformer-based Language Models
  • DOI:
    10.18653/v1/2021.findings-emnlp.305
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jieren Deng;Yijue Wang;Ji Li;Chenghong Wang;Chao Shang;Hang Liu;S. Rajasekaran;Caiwen Ding
  • 通讯作者:
    Jieren Deng;Yijue Wang;Ji Li;Chenghong Wang;Chao Shang;Hang Liu;S. Rajasekaran;Caiwen Ding
Machine Learning Techniques in Structure-Property Optimization of Polymeric Scaffolds for Tissue Engineering
组织工程聚合物支架结构性能优化中的机器学习技术
  • DOI:
    10.29007/nxm3
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Zigeng;Xiao, Xia;Nukavarapu, Syam;Kumbar, Sangamesh;Rajasekaran, Sanguthevar
  • 通讯作者:
    Rajasekaran, Sanguthevar
Against Membership Inference Attack: Pruning is All You Need
  • DOI:
    10.24963/ijcai.2021/432
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yijue Wang;Chenghong Wang;Zigeng Wang;Shangli Zhou;Hang Liu;J. Bi;Caiwen Ding;S. Rajasekaran
  • 通讯作者:
    Yijue Wang;Chenghong Wang;Zigeng Wang;Shangli Zhou;Hang Liu;J. Bi;Caiwen Ding;S. Rajasekaran
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanguthevar Rajasekaran其他文献

Robust network supercomputing with unreliable workers
  • DOI:
    10.1016/j.jpdc.2014.10.002
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kishori M. Konwar;Sanguthevar Rajasekaran;Alexander A. Shvartsman
  • 通讯作者:
    Alexander A. Shvartsman
Fast algorithms for placing large entries along the diagonal of a sparse matrix
  • DOI:
    10.1016/j.cam.2010.07.002
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vamsi Kundeti;Sanguthevar Rajasekaran
  • 通讯作者:
    Sanguthevar Rajasekaran
Distributed Path-Based Inference in Semantic Networks
  • DOI:
    10.1023/b:supe.0000026852.08638.96
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Chain-Wu Lee;Chun-Hsi Huang;Laurence Tianruo Yang;Sanguthevar Rajasekaran
  • 通讯作者:
    Sanguthevar Rajasekaran
A relaxation scheme for increasing the parallelism in Jacobi-SVD
  • DOI:
    10.1016/j.jpdc.2007.12.003
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sanguthevar Rajasekaran;Mingjun Song
  • 通讯作者:
    Mingjun Song
Evaluating holistic aggregators efficiently for very large datasets
  • DOI:
    10.1007/s00778-003-0112-2
  • 发表时间:
    2004-05-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Lixin Fu;Sanguthevar Rajasekaran
  • 通讯作者:
    Sanguthevar Rajasekaran

Sanguthevar Rajasekaran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanguthevar Rajasekaran', 18)}}的其他基金

Ninth International Conference on Computational Advances in Bio & Medical Sciences (ICCABS)
第九届生物计算进展国际会议
  • 批准号:
    2005642
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Eighth International IEEE Conference on Computational Advances in Bio and Medical Sciences (ICCABS) - Travel Awards
第八届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1853991
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Seventh International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第七届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1747853
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAISE: Big Data Tools: From Bioinformatics To Materials Genomics
RAISE:大数据工具:从生物信息学到材料基因组学
  • 批准号:
    1743418
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fifth International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第五届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1554243
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Sixth International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第六届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1649360
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fourth International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第四届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1441827
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: DKM: Novel Out-of-core and Parallel Algorithms for Processing Biological Big Data
BIGDATA:F:DKA:DKM:用于处理生物大数据的新型核外并行算法
  • 批准号:
    1447711
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Third International IEEE Conference on Computational Advances in Bio and Medical Sciences (ICCABS) - Travel Awards
第三届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1342060
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Second International IEEE Conference on Computational Advances in Bio and medical Sciences (ICCABS) - Travel Awards
第二届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
  • 批准号:
    1219598
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    30.0 万元
  • 项目类别:
    省市级项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
  • 批准号:
    22207024
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
  • 批准号:
    LY22H200001
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
  • 批准号:
    LY22B020003
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
BMP9/BMP type I receptors 通过激活 PPARα保护心肌梗死的机制研究
  • 批准号:
    LQ22H020003
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
C2H2-type锌指蛋白在香菇采后组织软化进程中的作用机制研究
  • 批准号:
    32102053
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管阻断型Type-I光敏剂合成及其三阴性乳腺癌光诊疗
  • 批准号:
    62120106002
  • 批准年份:
    2021
  • 资助金额:
    255 万元
  • 项目类别:
    国际(地区)合作与交流项目
Chichibabin-type偶联反应在构建联氮杂芳烃中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
茶尺蠖Type-II环氧性信息素合成酶关键基因的鉴定及功能研究
  • 批准号:
    LQ21C140001
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: EAGER: International Type II: Assessing the Role of Social Innovation for Resilience in Global Collaborative Research
合作研究:EAGER:国际 II 类:评估社会创新对全球合作研究复原力的作用
  • 批准号:
    2329358
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: International Type II: Assessing the Role of Social Innovation for Resilience in Global Collaborative Research
合作研究:EAGER:国际 II 类:评估社会创新对全球合作研究复原力的作用
  • 批准号:
    2124687
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Collaborative Research: Reimagining International Research for Students in a Virtual World
EAGER International Type II:协作研究:在虚拟世界中为学生重新构想国际研究
  • 批准号:
    2106093
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Synchronized cloud-based collaborative platform
EAGER International Type II:基于云的同步协作平台
  • 批准号:
    2126534
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: International Type II: Classifying the Causes, Consequences, and Lessons of Resilience Within International Scientific Collaboration
EAGER:国际类型 II:对国际科学合作中复原力的原因、后果和教训进行分类
  • 批准号:
    2122228
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Sustainable International Collaboration in Spatiotemporal Modeling of Human Mobility and Contagion Dynamics for COVID-19
EAGER International Type II:针对 COVID-19 的人类流动性和传染动力学时空建模的可持续国际合作
  • 批准号:
    2119334
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Collaborative Research: Reimagining International Research for Students in a Virtual World
EAGER International Type II:协作研究:在虚拟世界中为学生重新构想国际研究
  • 批准号:
    2106100
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER International Type II: Inclusiveness and Diversity as Building Blocks of Resilient International Research Teams in the Age of COVID-19
EAGER International Type II:包容性和多样性是 COVID-19 时代有弹性的国际研究团队的基石
  • 批准号:
    2114474
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: International Type II: Assessing the Role of Social Innovation for Resilience in Global Collaborative Research
合作研究:EAGER:国际 II 类:评估社会创新对全球合作研究复原力的作用
  • 批准号:
    2124669
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: International Type II: A Team Science Examination of Virtual, Hybrid, and In-Person Strategies for Strengthening International Collaboration on Agritourism Research
EAGER:国际类型 II:针对加强农业旅游研究国际合作的虚拟、混合和面对面策略的团队科学检验
  • 批准号:
    2122374
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了