Collaborative Research: Integrating Plant Hydraulics with Climate and Hydrology to Understand and Predict Responses to Climate Change

合作研究:将工厂水力学与气候和水文学相结合,以了解和预测对气候变化的响应

基本信息

  • 批准号:
    1450650
  • 负责人:
  • 金额:
    $ 46.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

Droughts threaten the health of the nation's forest resources by reducing tree growth and increasing mortality from multiple causes including fires and insect attack. This project will determine when and where forests are most at risk from drought-induced mortality in the western USA under current and future climate scenarios. Plant drought responses will be predicted from a theory of water supply and demand that is based on the physics of water flow. When plants are photosynthesizing they are also losing water by evaporation through the stomatal pores that take up CO2 in their leaves. The lost water is replenished by a passive wicking process that pulls water from the soil into roots and up dead, water-filled xylem tubes. Drought-induced failure of this water transport limits the possible rate of water supply, which by theory is associated with reduced water demand caused by closure of stomatal pores. Consequently, prolonged droughts reduce growth and transport capacity, creating persistent metabolic stresses that increase mortality by the "chronic stress hypothesis". A computer model will combine the supply-demand theory with climatic and landscape causes of drought stress, including precipitation, groundwater hydrology, and atmospheric humidity. The model and chronic stress hypothesis will be tested in greenhouse, plantation, and natural stands, focusing on trees of the intermountain west. Predictions for the region's forests will be made from climate projections. Forecasts will inform decisions on land management. Educational versions of the model will illustrate the combined roles of climate and groundwater hydrology on plant health. The project is a regionally focused trial of an approach that can be applied nationally and globally. The goal is to identify and characterize the key hydraulic traits of plants necessary for accurate predictions of how their gas exchange, vascular performance, productivity, and risk of mortality will respond to climate change. The context is forests of the mountain west (USA), where droughts have already caused significant woody plant mortality. The backbone of the project is a model of the soil-plant-atmosphere continuum that applies mathematical approaches for soil water flow to plant xylem. Key research questions include whether the model can be accurately driven by climate and hydrology, the importance of vascular recovery via xylem refilling, and whether there is a chronic stress threshold of vascular dysfunction and consequent reduction in CO2 uptake and productivity that is reproducibly associated with mortality risk. The utility of the chronic stress hypothesis is that hydraulics can be predicted from the climate-coupled model, whereas the exact proximal cause of death is likely variable and less predictable. The integrated model and chronic stress idea will be tested rigorously in greenhouse, research garden, and natural settings, including tests of its ability to "hindcast" the current hydraulic status of montane woody plants in the region from known climate inputs. The model will predict the severity of droughts required to threaten western forests, and forecast the immediate impacts of future climate scenarios for the region. Forecasts will inform forest management decisions. Educational model versions will promote understanding of the plant-climate linkage. Research versions will be available via website, because the basic approach is relevant for analyzing drought impacts on forests of any region.
干旱通过减少树木生长和增加包括火灾和虫害在内的多种原因造成的死亡率,威胁着国家森林资源的健康。该项目将确定在当前和未来的气候情景下,美国西部的森林在何时何地最容易受到干旱导致的死亡的威胁。植物的干旱反应将根据基于水流物理学的水供需理论进行预测。当植物进行光合作用时,它们也会通过气孔蒸发失去水分,气孔吸收叶片中的二氧化碳。流失的水分通过被动的抽吸过程得到补充,该过程将水分从土壤中抽到根部,并进入充满水的木质部管。干旱导致的这种水运输的失败限制了可能的供水量,从理论上讲,这与气孔关闭导致的需水量减少有关。因此,长期干旱降低了生长和运输能力,造成持续的代谢压力,根据“慢性压力假说”增加了死亡率。一个计算机模型将把供需理论与干旱压力的气候和景观原因结合起来,包括降水、地下水水文和大气湿度。该模型和慢性应力假设将在温室、人工林和自然林分进行测试,重点是西部山间的树木。对该地区森林的预测将基于气候预测。预报将为土地管理决策提供信息。该模型的教育版本将说明气候和地下水水文对植物健康的综合作用。该项目以区域为重点,对一种可在国家和全球应用的方法进行试验。目标是确定和描述植物的关键水力特征,以准确预测它们的气体交换、血管性能、生产力和死亡风险将如何应对气候变化。背景是西部山区(美国)的森林,干旱已经造成大量木本植物死亡。该项目的核心是土壤-植物-大气连续体模型,该模型应用数学方法研究土壤水分流向植物木质部。关键的研究问题包括气候和水文是否能够准确地驱动该模型,木质部再填充对血管恢复的重要性,以及是否存在血管功能障碍的慢性应激阈值,以及随之而来的二氧化碳吸收和生产力的降低是否与死亡风险可重复相关。慢性压力假说的效用是,水力学可以从气候耦合模型中预测出来,而确切的近距离死亡原因可能是可变的,难以预测。综合模型和慢性压力理念将在温室、研究花园和自然环境中进行严格测试,包括测试其根据已知气候输入“预测”该地区山地木本植物当前水力状况的能力。该模型将预测威胁西部森林所需的干旱的严重程度,并预测该地区未来气候情景的直接影响。预报将为森林管理决策提供信息。教育模型版本将促进对植物-气候联系的理解。研究版本将通过网站提供,因为基本方法与分析干旱对任何地区森林的影响有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Sperry其他文献

New perspectives on the English Channel megaflood hypothesis: High-resolution multibeam and seabed camera imaging of submarine landforms in the Northern Palaeovalley
  • DOI:
    10.1016/j.geomorph.2021.107692
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Riccardo Arosio;Jenny S. Collier;Jon Hawes;Sanjeev Gupta;John Sperry
  • 通讯作者:
    John Sperry

John Sperry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Sperry', 18)}}的其他基金

Comparative Analysis of Xylem Function
木质部功能比较分析
  • 批准号:
    0743148
  • 财政年份:
    2008
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: Comparative Hydraulic Architecture; An Analysis of Transport Efficiency and Mechanical Constraints
合作研究:比较水利建筑;
  • 批准号:
    0544474
  • 财政年份:
    2006
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Structure-Function Trade-Offs in Xylem
木质部的结构与功能权衡
  • 批准号:
    0416297
  • 财政年份:
    2004
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: The structure-function tradeoffs associated with embolism resistance in conifer wood
论文研究:与针叶树抗栓塞性相关的结构功能权衡
  • 批准号:
    0308862
  • 财政年份:
    2003
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
A Biomechanical Approach to Xylem Structure and Function
木质部结构和功能的生物力学方法
  • 批准号:
    0112213
  • 财政年份:
    2001
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Continuing Grant
Water Uptake and Drought Tolerance in Great Basin Shrubs
大盆地灌木的吸水性和耐旱性
  • 批准号:
    9996138
  • 财政年份:
    1999
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Continuing Grant
Water Uptake and Drought Tolerance in Great Basin Shrubs
大盆地灌木的吸水性和耐旱性
  • 批准号:
    9723464
  • 财政年份:
    1997
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Continuing Grant
Hydraulic Constraints on Transpiration and Stress Tolerance of Cold Desert Shrubs
水力约束对冷漠灌木蒸腾作用和抗逆性的影响
  • 批准号:
    9319180
  • 财政年份:
    1994
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Continuing Grant
Mechanisms of Xylem Embolism in Tree Species
树种木质部栓塞的机制
  • 批准号:
    8806264
  • 财政年份:
    1989
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
REU: Mechanisms of Xylem Embolism in Tree Species
REU:树种木质部栓塞的机制
  • 批准号:
    8996236
  • 财政年份:
    1989
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325837
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325838
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325836
  • 财政年份:
    2024
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
IntBIO: Collaborative Research: Phenotypes of the Anthropocene: integrating the consequences of sensory stressors across biological scales
IntBIO:合作研究:人类世的表型:整合跨生物尺度的感觉压力源的后果
  • 批准号:
    2316364
  • 财政年份:
    2023
  • 资助金额:
    $ 46.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了