BRAIN EAGER: Integrative Cross-Modal and Cross-Species Brain Models: Motivation and Reward

BRAIN EAGER:综合跨模式和跨物种大脑模型:动机和奖励

基本信息

  • 批准号:
    1451017
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Motivation translates goals into action, and significantly impacts cognition along several dimensions. The motivation for reward biases attention, perception, and memory, and enhances learning, with effects evidenced behaviorally as well as in specific brain regions. However, given such broad effects of reward motivation, the question remains: how does reward motivation propagate throughout the brain and how does it dynamically change the greater neural circuitry to prime us to behave appropriately? In order to answer these questions we develop statistical models for the effect of motivation on neural circuitry, which combine data recorded using different instruments across a variety of species. A fuller understanding of the neural effects of motivation would elucidate how it impacts important cognitive processes, yielding insights that are useful for better performance in various arenas, from education to therapy. In order to gain a more complete understanding of the neural network dynamics underlying the behavioral and cognitive effects of motivation, it is necessary to integrate research in human subjects, and in animal models. While extensive and crucial research has been carried out on reward motivation separately in humans and animal models, there is a clear need for improved translation across species. An overarching analytical framework for translation is extremely important, due to the complexity of the problems being addressed, and to leverage the strengths offered by each species and available technology. The aim of this work is the development of dynamic, hierarchical Bayesian models to discover functional neural networks that can translate across species and data collection modalities. Bayesian models of human behavior, and Bayesian machine learning inspired methods for neural network modeling, have been extremely successful, making Bayesian methods fertile ground for explorations into translational neural network discovery.
动机将目标转化为行动,并在沿着几个维度显著影响认知。奖励的动机会使注意力、感知和记忆产生偏差,并增强学习能力,其效果在行为上和特定的大脑区域都有体现。 然而,考虑到奖励动机的广泛影响,问题仍然存在:奖励动机如何在整个大脑中传播,以及它如何动态地改变更大的神经回路,以引导我们做出适当的行为?为了回答这些问题,我们开发了动机对神经回路影响的统计模型,该模型结合了使用不同仪器记录的各种物种的联合收割机数据。更全面地了解动机的神经效应将阐明它如何影响重要的认知过程,从而产生有助于在从教育到治疗的各个领域取得更好表现的见解。为了更全面地了解动机的行为和认知效应背后的神经网络动力学,有必要整合人类受试者和动物模型的研究。虽然在人类和动物模型中分别对奖励动机进行了广泛而重要的研究,但显然需要改进跨物种的翻译。翻译的总体分析框架是非常重要的,因为要解决的问题的复杂性,并利用每个物种和可用技术提供的优势。这项工作的目的是开发动态的、分层的贝叶斯模型,以发现可以跨物种和数据收集模式翻译的功能神经网络。人类行为的贝叶斯模型和贝叶斯机器学习启发的神经网络建模方法非常成功,使贝叶斯方法成为探索转化神经网络发现的肥沃土壤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Heller其他文献

OTC Product: BioSafe Diabetes Risk Assessment
  • DOI:
    10.1331/japha.2008.08529
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine Heller
  • 通讯作者:
    Katherine Heller
Performance of machine learning models for predicting high-severity symptoms in multiple sclerosis
  • DOI:
    10.1038/s41598-024-63888-x
  • 发表时间:
    2025-05-25
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Subhrajit Roy;Diana Mincu;Lev Proleev;Chintan Ghate;Jennifer S. Graves;David F. Steiner;Fletcher Lee Hartsell;Katherine Heller
  • 通讯作者:
    Katherine Heller
Evaluating the Usability and Impact of an Artificial Intelligence-Powered Clinical Decision Support System for Depression Treatment
  • DOI:
    10.1016/j.biopsych.2020.02.451
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Myriam Tanguay-Sela;David Benrimoh;Kelly Perlman;Sonia Israel;Joseph Mehltretter;Caitrin Armstrong;Robert Fratila;Sagar Parikh;Jordan Karp;Katherine Heller;Ipsit Vahia;Daniel Blumberger;Sherif Karama;Simone Vigod;Gail Myhr;Ruben Martins;Colleen Rollins;Christina Popescu;Eryn Lundrigan;Emily Snook
  • 通讯作者:
    Emily Snook
OTC Product: SinuCleanse for Rhinosinusitis
  • DOI:
    10.1331/154434506775268607
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Katherine Heller
  • 通讯作者:
    Katherine Heller
The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa
全球化公平案例:关于非洲殖民主义、人工智能和健康的混合方法研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Asiedu;Awa Dieng;Alexander Haykel;Negar Rostamzadeh;Stephen R. Pfohl;Chirag Nagpal;Maria Nagawa;Abigail Oppong;Sanmi Koyejo;Katherine Heller
  • 通讯作者:
    Katherine Heller

Katherine Heller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Heller', 18)}}的其他基金

CAREER: Interacting Dynamic Bayesian Models for Social Behavior and Reasoning
职业:社会行为和推理的互动动态贝叶斯模型
  • 批准号:
    1553465
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bayesian Models of Social Behavior Using Online Resources
使用在线资源的社会行为贝叶斯模型
  • 批准号:
    1339593
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop for Women in Machine Learning
机器学习女性研讨会
  • 批准号:
    1346800
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bayesian Models of Social Behavior using Online Resources
使用在线资源的社会行为贝叶斯模型
  • 批准号:
    1048563
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Beyond Clustering: Unsupervised Modeling with Complex Representations
超越聚类:具有复杂表示的无监督建模
  • 批准号:
    EP/E042694/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship

相似海外基金

EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
  • 批准号:
    2409037
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Creating a Composite EL Nino Record from the Lowland Neotropics
EAGER:创造低地新热带区综合厄尔尼诺记录
  • 批准号:
    2417794
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了